
Rational ® IBM Informix

IBM Informix 4GL to EGL Conversion Utility

User’s Guide

Version 6.0.0.1

G251-2485-00

���

Rational ® IBM Informix

IBM Informix 4GL to EGL Conversion Utility

User’s Guide

Version 6.0.0.1

G251-2485-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page L-1.

First Edition (February 2005)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

In This Introduction . vii

About This Manual . vii

Types of Users . vii

Features of This Product . vii

Product Installation . viii

Platforms Supported . ix

Typographical Conventions . ix

Documentation . ix

IBM Welcomes Your Comments . xi

Chapter 1. Overview of the Conversion Process 1-1

In This Chapter . 1-1

Introduction to the I4GL to EGL Conversion . 1-1

Conversion Benefits . 1-1

I4GL to EGL Conversion Overview . 1-2

Pre-Conversion Stage . 1-2

Conversion Stage . 1-2

Post-Conversion Stage . 1-3

Reconversion Stage . 1-3

Conversion Limitations . 1-3

C Interface Support and Limitations . 1-4

Report Support and Limitations . 1-4

Screen Forms Support . 1-5

Chapter 2. Preparing for Conversion . 2-1

In This Chapter . 2-1

Overview of Pre-Conversion Tasks . 2-1

Verify the I4GL Conversion Utility Installation . 2-2

Conversion Limitations and Workarounds . 2-2

C Code Functionality . 2-2

Reports . 2-3

Identify Existing I4GL Components Project . 2-4

Generate I4GL Source Files . 2-4

Compile your I4GL Application . 2-4

Identify the Client Locale . 2-5

Identify and Separate the Shared Libraries . 2-5

Modifying C Code Used with Rapid Development System (RDS) 2-5

Identify User-Defined Message Files . 2-6

Identify Informix Database Schema Information . 2-6

Identify an EGL Destination Directory . 2-6

Prepare the I4GL Source File Directory . 2-7

Chapter 3. Conversion Tasks . 3-1

In This Chapter . 3-1

Conversion Utility Stages . 3-1

Informix Database Schema Extraction . 3-1

Conversion Utility Processing for Informix Database Schema Extraction 3-3

I4GL Shared Libraries Conversion . 3-3

Conversion Utility Processing for I4GL Shared Libraries 3-4

I4GL Application Conversion . 3-4

Conversion Utility Processing for I4GL Application Conversion 3-7

Conversion Utility Command Line Mode . 3-7

The Conversion Log . 3-8

© Copyright IBM Corp. 2005 iii

Chapter 4. Post-Conversion Tasks . 4-1

In This Chapter . 4-1

Post-Conversion Tasks . 4-2

Changes Made During the Conversion . 4-2

Artifacts Generated During the Conversion . 4-3

Configuration File . 4-4

Manifest File . 4-5

Source File Conversion Mapping . 4-5

Command Line Conversion: Importing Projects into the Workspace 4-6

Correcting Conversion Errors . 4-6

Conversion Log Contents . 4-7

Using C Shared Libraries with the EGL Program . 4-9

EGL Native Library . 4-9

Function Table . 4-9

Creating the Application Level Shared Library . 4-10

Properties Files . 4-11

Validating and Compiling Converted EGL Files . 4-12

Generating EGL to Java . 4-13

Understanding Error Message Conversion . 4-14

Understanding Report Conversion . 4-14

EGL Report Driver Functions . 4-15

I4GL Report Sections . 4-16

Understanding your EGL Projects, Packages and Files . 4-27

EGL Project . 4-27

Package . 4-28

EGL Files . 4-29

Recommendations . 4-30

The Information Center Help System and EGL Tutorial . 4-31

Chapter 5. Reconversion Process and Tasks 5-1

In This Chapter . 5-1

When to Reconvert Your I4GL Shared Libraries . 5-1

How to Reconvert Your I4GL Shared Libraries . 5-1

Conversion Wizard Reconversion . 5-2

Command Line Reconversion . 5-2

Reasons and Workarounds for Unsuccessful Reconversions 5-2

Appendix A. I4GL to EGL Syntax Mapping . A-1

Appendix B. I4GL Report Conversion Code Example B-1

Appendix C. I4GL Form Code to EGL Form Code Example C-1

Appendix D. Configuration File Templates . D-1

Appendix E. Manifest File Examples . E-1

Appendix F. DTD Examples . F-1

Appendix G. Conversion Log Examples . G-1

Appendix H. EGL Build Descriptor Example H-1

Appendix I. EGL Reserved Words . I-1

Glossary . J-1

Error Messages . K-1

iv IBM Informix 4GL to EGL Conversion Utility User’s Guide

Notices . L-1

Index . X-1

Contents v

vi IBM Informix 4GL to EGL Conversion Utility User’s Guide

Introduction

In This Introduction . vii

About This Manual . vii

Types of Users . vii

Features of This Product . vii

Product Installation . viii

Platforms Supported . ix

Typographical Conventions . ix

Documentation . ix

IBM Welcomes Your Comments . xi

In This Introduction

This introduction provides an overview of the information in this manual and

describes the conventions it uses.

About This Manual

This manual provides information on how to convert IBM Informix 4GL (I4GL)

applications into Enterprise Generation Language (EGL) applications. Used in

Rational Application Developer (RAD) and Rational WebSphere Developer (RWD),

EGL is a development technology that lets you quickly write full-function

applications that run in a Java™ environment and on z/OS.

Types of Users

This manual is written for I4GL application developers who want to have the

flexibility of creating web applications, want to extend the usability of their

applications containing forms, want to use the new EGL reporting capability, want

to use Message Queues with their EGL program, and want to use the full range of

EGL functionality.

This manual assumes that you have I4GL programming experience, including

experience with compiling I4GL code. In addition, if you use C code with your

I4GL program, you must know C language programming.

Features of This Product

Information in this section covers both the I4GL to EGL Conversion Utility product

and extended I4GL-like functionality within EGL.

The I4GL to EGL Conversion Utility converts your shared libraries and I4GL

applications into EGL packages and programs. After the conversion of your shared

libraries and I4GL applications, you can link your C functions with your converted

EGL code.

EGL provides the following I4GL-like functionality:

Screen Forms. The Conversion Utility converts your existing I4GL screen forms

into the EGL-equivalent Console User Interface.

© Copyright IBM Corp. 2005 vii

Calling C functions. C functions can be invoked from an I4GL program. Similarly,

EGL can invoke C functions.

Reports. The Conversion Utility converts your I4GL report files into equivalent

EGL and JasperReports files.

Note: This product includes software developed by Teodor Danciu

(http://jasperreports.sourceforge.net).

Product Installation

The I4GL to EGL Conversion Utility Version 6.0.0.1 is available for download

through the Rational Product Updater. To install the Conversion Utility, you must

have both the 6.0 version of your Rational product and the iFix004 version of your

EGL plugin installed.

If you are reading this Guide before installing your Rational product and EGL

plugin, you should review your Rational product Installation Guide first.The

Installation Guide provides information on software and hardware requirements.

To install the I4GL to EGL Conversion Utility:

1. Log on to your system with the same user account used to install your Rational

product.

Note: On Windows operating systems, this account requires Administer

privileges. On Linux operating systems, you must use the root user

account.

2. Start the Rational Product Updater.

v For Windows: Select Start > Programs > IBM Rational > Rational Product

Updater.

v For Linux: In the GNOME desktop environment, select the main menu, then

select Programming > Rational Product Updater.
3. Click the Find Optional Features button. A progress indicator tells you the

update sites are being searched.

4. Within the Product window, select the Informix 4GL to EGL Conversion

Utility check box.

5. Click the Install Features button.

6. If the Rational Software Development Platform is running, you may be

prompted to stop it. If so, click OK to close the dialog box. When you have

stopped the Rational Software Development Platform, return to the Product

Updater and again click Install Features.

7. A dialog box shows the license agreement for the Conversion Utility. Once you

have read and accepted the license agreement, click OK to begin the

installation.

When the installation is finished, the progress indicator closes and a message

confirming the success of the installation appears in the top pane of the Product

Updater. For more information about using the Rational Product Updater, see the

Rational Product Updater and the Finding and installing product updates help topics in

your Rational product.

viii IBM Informix 4GL to EGL Conversion Utility User’s Guide

Platforms Supported

To successfully convert your I4GL Programs to EGL Packages, you must have

access to one of the following development environment platforms:

v Windows

v Linux

In addition, you must have sufficient system access and permissions to the source

code and directory structure to allow the creation of shared libraries and new .egl

source files.

Typographical Conventions

This section describes the typographical conventions that this manual uses. These

conventions make it easier to gather information from this and other volumes in

the documentation set.

 Convention Meaning

KEYWORD All primary elements in a programming language statement (keywords)

appear in uppercase letters in a serif font.

italics

italics

italics

Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface

boldface

Names of program entities (such as classes, events, and tables),

environment variables, file and pathnames, and interface elements (such

as icons, menu items, and buttons) appear in boldface.

monospace

monospace

Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Documentation

This section discusses the documentation you can use to assist with the I4GL

conversion and to learn more about how to use EGL.

This IBM Informix 4GL to EGL Conversion User’s Guide (User’s Guide) leads I4GL

users through the Conversion Path to EGL, and has the following chapters:

v This introduction

v Chapter 1, “Overview of the Conversion Process,” which introduces the benefits

and limitations of the I4GL to EGL conversion process and provides an overview

of the pre-conversion, conversion, post-conversion, and reconversion stages.

v Chapter 2, “Preparing for Conversion,” which describes the tasks users need to

complete before using the Conversion Wizard. These tasks include identifying

the components of your database schema and I4GL application, creating C

shared libraries, and understanding your report font specifications.

v Chapter 3, “Conversion Tasks,” which provides details on how to use the

Conversion Wizard to extract your Informix database schema and convert your

I4GL shared libraries and applications.

Introduction ix

v Chapter 4, “Post-Conversion Tasks,” which describes the changes made by the

Conversion Utility to your I4GL application, the artifacts generated during the

conversion, how to correct conversion errors, and how to use the C shared

libraries with your EGL application. This chapter also provides information on

how to use the EGL Information Center online help system.

v Chapter 5, “Reconversion Process and Tasks,” which describes when and how to

reconvert your I4GL shared libraries.

v Appendix A, “I4GL to EGL Syntax Mapping,” on page A-1, which provides the

mapping between I4GL and EGL syntax.

v Appendix B, “I4GL Report Conversion Code Example,” on page B-1, which

provides an example of I4GL report code and the comparable examples of the

EGL driver functions.

v Appendix C, “I4GL Form Code to EGL Form Code Example,” on page C-1,

which provides an example of I4GL form code and the comparable EGL code.

v Appendix D, “Configuration File Templates,” on page D-1, which provides

template configuration files for Database Schema Extraction, Library, and

Application projects.

v Appendix E, “Manifest File Examples,” on page E-1, which provides examples of

manifest files for Database Schema Extraction, Library, and Application projects.

v Appendix F, “DTD Examples,” on page F-1, which provides examples of the

DTD used for configuration and manifest files for Database Schema Extraction,

Library, and Application projects.

v Appendix G, “Conversion Log Examples,” on page G-1, which provides

examples of conversion logs in .txt format.

v Appendix H, “EGL Build Descriptor Example,” on page H-1, which provides

examples of EGL build descriptor file generated by the Conversion Utility.

v Appendix I, “EGL Reserved Words,” on page I-1, which lists the EGL reserved

words.

v A glossary of relevant terms and an Error Messages section follow the chapters.

v A Notices appendix describes IBM products, features, and services.

v An index directs you to areas of particular interest.

You should read this book in its entirety before attempting to convert your I4GL

application and you should refer to this book when converting your I4GL

applications.

Your Rational product includes a readme.html file. The readme.html file contains

the latest information on any product limitations or changes to documentation for

your Rational product. This file is located in the top directory of your Rational

product.

In addition, the Conversion Utility includes a readme004FGL.html file. The

readme004FGL.html file contains information on Conversion Utility limitations

and changes to documentation since the completion of this User’s Guide. You

should review the contents of the readme004FGL.html file before converting your

I4GL applications. The file is located in the top directory of the Conversion Utility

plugin.

When using the conversion wizard, you can activate the help for the specific panel

you are using by pressing F1. Each panel of the Conversion Wizard has a

dedicated help topic associated with it. Each help topic explains what information

is required by the wizard panel. To activate the help topic, with your cursor on the

wizard panel, press the F1 key.

x IBM Informix 4GL to EGL Conversion Utility User’s Guide

Information on how to use your converted EGL code is located in the following

places:

v The Rational online information center. The information center is accessible from

the main menu by selecting Help > Rational Help.

v The EGL Reference Guide. Provided in .pdf format, this guide is a compilation of

all of the EGL information center topics, is indexed, and can be printed into

hard-copy format. The filename for the guide is eglref.pdf, and the file is located

in the top-level directory of your Rational product. The document is refreshed

occasionally, and the most recent copy of the document is always located on the

EGL website at www.ibm.com/developerworks/rational/library/egldoc.html.

v The EGL Tutorial teaches you how to build a simple dynamic Web site using

EGL. The tutorial is accessible from the main menu by selecting Help >

Tutorials Gallery. More information about the Tutorial is available in “The

Information Center Help System and EGL Tutorial” on page 4-31.

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find

useful in our manuals, which will help us improve future versions. Include the

following information:

v The name and version of the manual that you are using

v Section and page number

v Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our

documentation. For immediate help with a technical problem, contact IBM

Technical Support. The product home page for Rational Application Developer is

www.ibm.com/software/awdtools/developer/application/index.html. For FAQs,

lists of known problems and fixes, and other support information, visit the Support

page on the product home page. You can also post questions through Rational

Application Developer Forum.

We appreciate your suggestions.

Introduction xi

mailto:docinf@us.ibm.com

xii IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 1. Overview of the Conversion Process

In This Chapter . 1-1

Introduction to the I4GL to EGL Conversion . 1-1

Conversion Benefits . 1-1

I4GL to EGL Conversion Overview . 1-2

Pre-Conversion Stage . 1-2

Conversion Stage . 1-2

Post-Conversion Stage . 1-3

Reconversion Stage . 1-3

Conversion Limitations . 1-3

C Interface Support and Limitations . 1-4

Report Support and Limitations . 1-4

Screen Forms Support . 1-5

In This Chapter

This chapter introduces you to the benefits and limitations of the I4GL to EGL

conversion process and provides an overview of the pre-conversion, conversion,

post-conversion, and reconversion stages.

Introduction to the I4GL to EGL Conversion

The IBM Informix 4GL to EGL Conversion Utility (Conversion Utility) enables

applications written in the Informix 4GL (I4GL) language to be converted to the

Enterprise Generation Language (EGL). EGL lets you quickly write full-function

applications that run in a Java™ environment. EGL gives you the ability to deliver

enterprise data to browsers, even if you have minimal experience with Web

technologies. You can use EGL to code a Web service that can be accessed by other

Internet-based programs.

The Conversion Utility converts an I4GL program using a specific display device

and connecting a specific IBM Informix Dynamic Server (IDS) database into an

equivalent EGL program using the same specific display device and connecting to

the same IDS database. The Conversion Utility converts I4GL language syntax and

builds artifacts (like I4GL shared libraries) into equivalent EGL components. At

runtime, the EGL build generates a Java executable program. EGL applications can

work with IDS databases. Currently, EGL applications are not supported on IBM

Informix XPS, Online, or SE databases.

The Conversion Utility offers you the ability to convert a program in one session,

begin a conversion and finish when desired, or reconvert a shared library as

necessary.

Conversion Benefits

I4GL users who convert their applications to EGL will be able to:

v Use the new EGL code exactly as I4GL was used, including the I4GL Forms

interface (called Console User Interface in EGL). EGL code will also be able to

call C functions and, with restrictions, call ESQL/C functions. Finally, EGL users

will be able to generate I4GL-like reports.

v Use the new EGL code to create web applications.

© Copyright IBM Corp. 2005 1-1

I4GL to EGL Conversion Overview

A successful I4GL to EGL conversion has three successive stages, each of which is

introduced below:

1. Pre-Conversion Stage

2. Conversion Utility Stage

3. Post-Conversion Stage

Note: Occasionally, you will need to reconvert your I4GL shared libraries. The

Reconversion Stage is also introduced below.

Pre-Conversion Stage

Prior to initiating the conversion, you need to identify the components of your

I4GL program and database schema and prepare your I4GL program files and

libraries. This information is detailed in Chapter 2, “Preparing for Conversion,” on

page 2-1.

Conversion Stage

The conversion of I4GL applications is accomplished with the Conversion Utility

Wizard. The Wizard screens prompt you to insert the information you organized

during the pre-conversion stage. Information on how to use the Wizard is detailed

in Chapter 3, “Conversion Tasks,” on page 3-1.

Converting an I4GL program is a multi-tiered process as shown in Figure 1-2 on

page 1-4. This figure summarizes the types of I4GL files that are converted, the

order in which the files are converted, and the resultant converted file types; it also

shows that .c files are not converted.

The components of your I4GL program must be extracted or converted in the

following order:

v Database schema information

v I4GL shared library or libraries

v I4GL application

Note: C shared libraries do not need to be converted in order to be used by EGL,

and they do not pass through the Wizard.

1-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Post-Conversion Stage

A conversion log will identify whether or not your conversion was completely

successful. If no errors are identified in the conversion log, the conversion was

successful, and you can compile your EGL source files and use your converted

application. If errors are identified in the conversion log, you must rectify those

errors before using your EGL files. This information is detailed in Chapter 4,

“Post-Conversion Tasks,” on page 4-1.

Reconversion Stage

When shared libraries are converted in the wrong order, or reference the functions

of another shared library, some function references assumed to be C functions are

later defined in EGL. Any shared libraries generated with an incorrect assumption

must be reconverted. In addition, shared libraries within applications containing

multiple shared libraries may occasionally need to be re-converted. For more

information on reconverting your shared libraries, see Chapter 5, “Reconversion

Process and Tasks,” on page 5-1.

Conversion Limitations

The I4GL to EGL Conversion Utility, Version 6.0.0.1 has the following limitations:

 1. C functions that call I4GL functions are not supported.

 2. I4GL programs that call ESQL/C are not supported.

 3. Global variables defined in I4GL modules cannot be accessed from C source

code.

 4. Database connection sharing between ESQL/C or C shared libraries and

migrated EGL Applications or Packages is not supported.

 5. Dynamic 4GL is not supported.

 6. You must use a third-party report design product to re-design converted

reports or design new reports.

 7. I4GL Reports converted to EGL can only be generated to Java; they cannot be

generated to COBOL.

 8. The performance of I4GL applications converted to EGL will be somewhat

reduced.

Figure 1-1. How an I4GL program converts to an EGL program

Chapter 1. Overview of the Conversion Process 1-3

9. Conversion of I4GL auxiliary products like Ace Reports and ISQL are not

supported.

10. EGL does not support both global and local cursor scope in the same

application or shared library. For example, you cannot convert a library with

local scope and an application with global scope.

11. The I4GL Program database syspgm4gl is not supported during the

conversion process.

Note: Task-oriented information about conversion limitations and their

workarounds is detailed in “Conversion Limitations and Workarounds” on

page 2-2.

C Interface Support and Limitations

Many I4GL users have I4GL programs that call C functions. With little or no

modification, you will be able to use your existing C code in your I4GL converted

code. For specific information on the tasks necessary to prepare your C code prior

to using the Conversion Utility, see “Modifying C Code Used with Rapid

Development System (RDS)” on page 2-5. For details on how to link the C shared

library with the converted EGL application, see “Using C Shared Libraries with the

EGL Program” on page 4-9. For details on how to use C functionality in EGL, see

the online information center.

Report Support and Limitations

The Conversion Utility converts I4GL Reports files into EGL files for the drivers

and ReportHandler, and into JasperReports files for the design values. With the

creation of these new files, EGL users are able to use a report designer or text

editor of their choice to design the layout of their reports.

Note: Your Rational product does not contain any third-party report design

software. If you want third-party report design software, you will need to

purchase this separately. For more information, see the EGL reports overview

help topic.

Figure 1-2 shows how I4GL reports convert to EGL. First, you define the properties

of the existing I4GL report program and enter it into the Conversion Utility

Wizard. In turn, the Utility Wizard produces the following output: JasperReport

XML design documents; EGL report driver functionality; and an EGL report

handler.

 For information on how to prepare your I4GL reports for conversion to EGL, see

“Conversion Limitations and Workarounds” on page 2-2. For information on how

to understand your reports conversion, see “Understanding Report Conversion” on

page 4-14

Figure 1-2. How I4GL Reports Converted to EGL

1-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

page 4-14. To review the syntax mapping between I4GL Reports, EGL and

JasperReports, see Appendix A, “I4GL to EGL Syntax Mapping,” on page A-1. For

information on how to use the EGL Reports feature in EGL, see the EGL reports

overview help topic.

Screen Forms Support

While the conversion of I4GL to EGL provides users with an opportunity to

implement web-based applications with graphical user interfaces, the Conversion

Utility also enables users to retain the appearance and functionality of their I4GL

screen forms, or text-based user interfaces. During the conversion of your I4GL

application, I4GL screen forms will be converted into EGL Console User Interfaces

(CUI). The CUI will have exactly the same functionality as the screen forms. In

addition to running your converted CUI, you can also develop new CUIs.

To review the syntax mapping between I4GL forms and the CUI, see “I4GL Forms

to EGL Console User Interface” on page A-8. For details on how to use the

Console User Interface in EGL applications, see the Console user interface help topic.

Chapter 1. Overview of the Conversion Process 1-5

1-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 2. Preparing for Conversion

In This Chapter . 2-1

Overview of Pre-Conversion Tasks . 2-1

Verify the I4GL Conversion Utility Installation . 2-2

Conversion Limitations and Workarounds . 2-2

C Code Functionality . 2-2

Reports . 2-3

Identify Existing I4GL Components Project . 2-4

Generate I4GL Source Files . 2-4

Compile your I4GL Application . 2-4

Identify the Client Locale . 2-5

Identify and Separate the Shared Libraries . 2-5

Modifying C Code Used with Rapid Development System (RDS) 2-5

Identify User-Defined Message Files . 2-6

Identify Informix Database Schema Information . 2-6

Identify an EGL Destination Directory . 2-6

Prepare the I4GL Source File Directory . 2-7

In This Chapter

This chapter describes the tasks you need to complete before using the Conversion

Wizard. These tasks include identifying the components of your database schema

and I4GL application, creating C shared libraries, and understanding your report

font specifications.

Overview of Pre-Conversion Tasks

For a successful conversion from I4GL to EGL, the Conversion Utility Wizard

requires specific information about your I4GL application. The pre-conversion steps

listed below will help you prepare your files for conversion and collect the

information required by the Wizard.

The following steps are detailed in this chapter:

 1. Verify the installation of the Conversion Utility.

 2. Understand the conversion limitations.

 3. Identify the I4GL project you want to convert, and record the names and

source file locations of each of the I4GL applications within the project.

Identify and record the names and locations of all dependent I4GL shared

libraries and C shared libraries linked with the I4GL application. As necessary,

you will need to list the shared libraries from already-converted EGL

packages.

 4. As needed, generate .4gl and .per files.

 5. Verify that all I4GL source files compile successfully using the I4GL 7.32

compiler.

 6. If any of your I4GL programs are compiled on non-English locales, identify

the client locale.

 7. Identify whether or not the I4GL build environment for a shared library

contains both .4gl and .c source files. If it does, segregate the .4gl files and

convert them as an I4GL shared library project. Compile the .c files into a

shared library.

© Copyright IBM Corp. 2005 2-1

8. Identify user-defined message files and the code pages in which the messages

are encoded.

 9. Start an IBM Informix database instance, create the database schema used by

I4GL modules, and record the following database connection information:

Database name, Server name, Host name, Port Number, Client Locale and

Database Locale. During conversion, you will also need to know your user

name and password.

10. Identify a destination directory for your EGL files.

11. Move your I4GL source files into the I4GL staging directory on the machine

on which you want to run the Conversion Utility.

Verify the I4GL Conversion Utility Installation

From your Rational product main screen, you can verify the existence of the

Conversion Utility by selecting File > New > Other and then selecting the Show

All Wizards option. If the option Informix 4GL to EGL Conversion is in the list,

the Conversion Utility is installed.

If the Informix 4GL to EGL Conversion option is not in the list, you must install

the Conversion Utility following the instructions provided in “Product Installation”

on page viii.

By default, the Conversion Utility is disabled. To activate the Utility, from the Main

menu select Window > Preferences > Workbench > Capabilities > Informix 4GL

to EGL Conversion.

Conversion Limitations and Workarounds

The conversion limitations, with workarounds as possible, are listed below:

C Code Functionality

In the I4GL language, C code has two implementations:

v C functions can be called by I4GL programs, and then using push and pop

external functions, the C functions can call an I4GL function.

v C programs can call I4GL functions by using the fgl_start(), fgl_call(),

fgl_exitfm(), and fgl_end() macros.

In the EGL language, an EGL function can call a C function, but a C function

cannot call an EGL function. Prior to converting your I4GL application to EGL, you

must remove from your code all instances of C functions calling I4GL functions. In

addition, you must remove the push functions used to pass values to the I4GL

function and the pop functions used to retrieve values returned by the I4GL

function.

Global variables defined in EGL cannot be used by the C code. Prior to conversion,

you must modify your I4GL and C code to explicitly pass such global variables to

the C code and then reset the values upon return from the C call.

Because EGL is converted into Java at runtime, an additional layer of JNI (Java

Native Interface) is involved when calling C functions. Therefore, the performance

of EGL applications calling C functions may be slower than the performance of

I4GL applications calling C functions.

2-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Reports

The Conversion Utility converts your I4GL report logic into two types of files:

v Multiple EGL (.egl) files for the ReportHandler and the ReportDriver functions

v A JasperReports (.jrxml) file for the report design

The Utility requires font format specifications to create the .jrxml file. During the

conversion of your I4GL application, the Wizard Cursor Scope and Report Font

File screen will prompt you to accept the default font specifications or to designate

alternate font specifications.

The default font specifications are:

locale name = en_us

 name = Courier New

 size = 10

 height = 12

 width = 6

 pdfFont = Courier

 encoding = CP1252

In addition, the FontInfo.xml file located in the

productinstallation/etc/examples/FontSpecification directory also lists these

default values. To designate alternative non-default font settings when using the

Wizard, you must edit the FontInfo.xml file to include your preferred font

information.

The following is an example of the default FontInfo.xml file:

<locale name=″en_us″>

 <name>Courier New</name>

 <size>10</size>

 <height>12</height>

 <width>6</width>

 <pdfFont>Courier</pdfFont>

 <encoding>CP1252</encoding>

</locale>

Define the following .xml fields in your file:

v locale name: the language and country identified with the font. Each locale is

limited to one font specification. However, you can include multiple different

locale specifications in the same .xml file.

v name: the name of the font.

v size: the size of the font, which must be an integer literal, such as ″10″.

v height: the height of the font in pixels, which must be an integer literal, such as

″12″.

The height value is used to calculate report elements requiring vertical

positioning, including static text field, text field, band and page height, and top

and bottom margin size.

v width: the width of the font in pixels, which must be an integer literal, such as

″6″. To ensure that your EGL report output produces output similar to your

I4GL report, the font must have a fixed width.

Chapter 2. Preparing for Conversion 2-3

The width value is used to calculate any report elements requiring horizontal

positioning, including static text field, text field, page and column width, and

left and right margin width.

v pdfFont: the name of the font to use if a report is exported to Adobe PDF

format.

v encoding: the alphanumeric code that designates the code pages in Java.

After you edit FontInfo.xml to specify your font specifications, you should rename

the file to a filename ending in .xml. If for any reason, your designated font

specification is corrupted, the conversion tool will map the default information into

your .jrxml file.

Note: The Conversion Utility does not attempt to verify the availability of your

selected font name, font size, PDF Font or encoding on your system. These

values will be transferred as specified from the font specification file to the

JasperReport Design (.jrxml) file. Incorrect font information can result in

EGL compilation or runtime errors.

You should follow these font specification selection guidelines:

v Use a font that has both fixed width and fixed height.

v Use a similar font for the general report export options and the PDF export

option.

v The font height and font width should reflect the number of pixels dimensions

of the given font type and size.

v Verify that the encoding string accurately reflects the locale.

Identify Existing I4GL Components Project

Once you have selected the I4GL program to convert, you must:

1. Identify and record the I4GL source modules and locations for each of your

I4GL applications.

2. Identify and record the file names and locations of each of the I4GL and C

shared libraries linked to the I4GL applications

3. As applicable, you must list the names and location of the manifest file from

already-converted I4GL shared libraries.

Note: You will be required to recompile the C shared libraries later during the

Pre-Conversion stage.

Generate I4GL Source Files

As needed, generate .4gl and .per source files.

Any pre-processing required to generate the I4GL source files from the I4GL

modules must be completed at this time.

Compile your I4GL Application

Compile your I4GL application code as appropriate and verify that it compiles

successfully. If your I4GL application code does not compile successfully, your

I4GL to EGL conversion will fail. Repair any code that does not compile

successfully. Do not attempt an I4GL to EGL conversion until all I4GL application

code compiles successfully.

2-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Identify the Client Locale

The Conversion Wizard uses the English designation of en_US.8859-1 as the

default locale for message files. If your message files are not in English, you must

identify the correct locale for your message files and have that information

available to insert into the Wizard.

Identify and Separate the Shared Libraries

If your I4GL program has shared libraries, you must review each library to identify

whether it was compiled from .4gl, .c, or both types of source files.

1. A shared library compiled from only .4gl source files does not require further

conversion preparation. It should be converted as an I4GL shared library

project.

2. A shared library compiled from only .c source files does not require further

conversion preparation. It should be linked when creating the application level

shared library.

3. A shared library compiled from both .4gl and .c source files requires the

following modifications:

a. The .4gl files must be segregated and converted as an I4GL shared library

project.

b. The .c files must be compiled into a shared library. This shared library

should be linked when creating the application level shared library. For

instructions on how to link the shared library, see “Using C Shared Libraries

with the EGL Program” on page 4-9.

After your I4GL application is converted, you will create an application level

shared library and link your C shared libraries to it. This application level shared

library will be used with your new EGL application. For more information, see

“Using C Shared Libraries with the EGL Program” on page 4-9.

Note: If your program uses pre-existing static libraries consisting of object files

compiled from .c source files, these static libraries should also be linked

when creating the application level shared library.

Modifying C Code Used with Rapid Development System

(RDS)

Because RDS uses a customized runner to call C functions from I4GL programs,

I4GL developers who use RDS must modify their C code as detailed below.

Note: A customized runner is an executable program that users create to run I4GL

programs that call C functions.

The customized runner is created with the cfglgo command, as shown in the

following syntax:

��

�

cfglgo

fgiusr.c

cfile

.ec

-o newfglgo

.c

.o

��

Chapter 2. Preparing for Conversion 2-5

Table 2-1. cfglgo elements

Element Description

fgiusr.c the name of the file in which the C and ESQL/C functions are

declared.

cfile .ec|.c|.o the name of the source file containing the C or ESQL/C functions to

be compiled and linked with the new runner, or the name of an

object file previously compiled from a .c or an .ec file.

newfglgo the name of the customized runner.

If you use RDS, you must compile all .o, .c or .ec files into a shared library. If any

.ec files are compiled in the library, you must use ESQL/C shared libraries when

compiling the library. This shared library should be linked when creating the

application level shared library. For more information, see “Using C Shared

Libraries with the EGL Program” on page 4-9.

For more information about the cfglgo command, see Chapter 1 of the IBM

Informix 4GL Reference Manual.

Identify User-Defined Message Files

Identify all user-defined message files and the code pages in which the messages

are encoded.

Identify Informix Database Schema Information

The first step in the conversion process is to extract the database schema for your

conversion application.

1. Create an instance of the database for your I4GL program

2. Locate and open the schema file

3. Record the following information:

v Database name

v Server name

v Host name

v Port name

v User name

v Password

v Database Locale

By default, the Conversion Utility ignores system tables. However, if the I4GL

applications using the database refer to any Informix system tables, you have the

option of the extracting the schema for all system tables in the database.

Identify an EGL Destination Directory

The Conversion Utility uses the EGL destination directory to organize the

converted EGL source files, message files, and project-specific files required by the

Rational IDE.

Based on the information provided to the Wizard, the Conversion Utility creates an

EGL destination directory for you. For example, if your identified EGL destination

directory is C:\egl\src, and your project name is MyProject, within the EGL

2-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

destination directory, the Conversion Utility creates a new sub-directory structure

of projectname\EGLSource\projectname Following the example parameters above,

the new directory structure is C:\egl\src\MyProject\EGLSource\MyProject.

The first instance of project name hosts the .classpath, .eglPath, and .project

Rational IDE-specific files, and serves as the project contents directory for

importing the converted project into the IDE.

The EGLSource sub-directory serves as the placeholder for all converted EGL

source files, and contains the projectname sub-directory, which represents the root

package name for all converted EGL files. The directory hierarchy of converted the

EGL files is identical to the I4GL source directory hierarchy, and resides within the

projectname sub-directory.

The Conversion Utility creates the follow directories within the EGL destination

directory:

v projectname\EGLSource\projectname. Hosts all converted EGL source files.

v projectname\MessageSource. Hosts all converted EGL Message files.

v project name\JavaSource. Hosts all generated Java Source files from EGL source

in IDE.

Note: If the same directory is identified for both your existing I4GL source files

and your new EGL source files, the conversion utility creates the new

directory structure before initiating the conversion.

The Conversion Utility stops the conversion if your system does not have write

permissions or enough disk space in the EGL destination directory. For a successful

conversion, you should have disk space at least equivalent to your existing I4GL

directory.

Prepare the I4GL Source File Directory

Prior to launching the Conversion Wizard, you must ensure that all of your I4GL

source files, shared libraries, and message files are located together in a directory.

This I4GL directory can be located within your Rational product workspace or in a

location entirely outside of your Rational product.

In addition, you can designate the same directory for both the storage of the I4GL

program source files and as the destination directory for the EGL project files. With

this option, the integrity of the I4GL source files is retained during conversion, and

results in a directory of I4GL and EGL source files.

Note: Although the Conversion Utility allows you to locate all of your I4GL

projects within, and to convert your I4GL projects from, one single directory,

you should locate your I4GL projects within individual directories. This

reduces the changes of complications arising from multiple similar files.

Chapter 2. Preparing for Conversion 2-7

2-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 3. Conversion Tasks

In This Chapter . 3-1

Conversion Utility Stages . 3-1

Informix Database Schema Extraction . 3-1

Conversion Utility Processing for Informix Database Schema Extraction 3-3

I4GL Shared Libraries Conversion . 3-3

Conversion Utility Processing for I4GL Shared Libraries 3-4

I4GL Application Conversion . 3-4

Conversion Utility Processing for I4GL Application Conversion 3-7

Conversion Utility Command Line Mode . 3-7

The Conversion Log . 3-8

In This Chapter

This chapter provides details on how to use the Conversion Wizard to extract your

Informix database schema and convert your I4GL shared libraries and applications.

This chapter also describes how to use the Conversion Utility command line

option, and introduces the Conversion Log.

Conversion Utility Stages

The I4GL Conversion Utility is a Wizard that prompts you for the information you

were required to collect and identify in Chapter 2, “Preparing for Conversion.”

To complete the conversion, the components of your I4GL program must pass

through the Wizard multiple times. In addition, your information must pass

through the Wizard in the following order:

1. Informix Database Schema

2. I4GL Shared Libraries

3. I4GL Application

Since C shared libraries are not converted to EGL, they do not pass through the

Wizard. For complete information on the processing of your C shared libraries, see

“Using C Shared Libraries with the EGL Program” on page 4-9.

As mentioned in “Documentation” on page ix, each panel of the Wizard has a help

topic associated with it. Access this help topic by pressing F1.

Informix Database Schema Extraction

The first step in the conversion process is to extract the project database schema.

Note: To limit the number of imports generated for your converted files, you

should extract each database as a separate project. Each database in a

Database Schema Extraction project will be a separate package, but all

databases are listed in the single manifest file generated for the Database

Schema Extraction project. The Conversion Utility inserts imports for all

packages listed in the manifest file even if they are not referenced by the

I4GL files.

To start the Utility and extract the Informix Database Schema:

© Copyright IBM Corp. 2005 3-1

1. From within the EGL Perspective in your Rational product, select File > New >

Other > Informix 4GL to EGL Conversion > Informix Database Schema

Extraction.

2. In the Database Schema Extraction screen, insert the following information:

v Project Name. For example, Mydbschema.

Note: The project names for database schema extraction and for shared

library and application conversion should be different.

v New Project. A database schema extraction is considered New if it does not

have an existing configuration file. For Location, you can browse to locate

the appropriate directory or you can create a new directory.

v Open Project. A database schema extraction is considered Open if it has an

existing configuration file. If you select this option, you must provide the

location of the existing configuration file. You can browse to locate the file.

v Conversion Artifacts. The Conversion Utility generates a number of artifacts

related to the conversion, including Configuration, manifest and Conversion

Log files. By default, the conversion artifacts will be located in the

EGLDestinationDirectory/ConversionArtifacts directory. You can also

designate to create the conversion artifacts in an external directory. You may

browse to an appropriate directory, but cannot create a new directory at this

time.
3. Database Connection Details. Add, delete, or edit information required to

connect to your Informix database server instance, including

v Database

v Server Name

v Host Name

v Port Number

v User Name

v Password

v Client Locale

v Database Locale

v System Tables. If the I4GL application requires extraction of the Informix

system tables, select Yes.
4. Conversion Project Details. You can review the configuration file, an .xml

document that coordinates all of the project details entered in the previous

screens. At this stage of the conversion process, the manifest file and the

Conversion Report screens are not populated with information.

5. Click Finish to initiate the database schema extraction.

6. Click Yes to confirm and start the database schema extraction.

7. The Schema Extraction Status screen confirms whether or not the extraction

was successful. If the extraction was successful, you can review the

now-populated manifest file, which contains column and table information for

the database selected. The Wizard refers to the manifest file during the

conversion of any I4GL shared library or application containing a DATABASE

statement. Continue as appropriate to “I4GL Shared Libraries Conversion” on

page 3-3 below or to “I4GL Application Conversion” on page 3-4.

A conversion log file identifying the detailed status of the converted project is

created.

If the Schema Extraction Status message is not successful, you must repeat this

Database Schema Extraction process from the beginning and correct any

3-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

erroneous information that you might have entered. For more information why

the database schema extraction might be unsuccessful, see “Correcting

Conversion Errors” on page 4-6.

8. Click Cancel to close the Wizard.

Conversion Utility Processing for Informix Database Schema

Extraction

The Database Schema Extraction stage initiates the following:

1. The Conversion Utility creates an individual EGL package for each of the

databases used in the I4GL program. Each of these EGL packages has an .egl

file relating to the database. The file has an SQLRecord definition mapping to

the table and dataitems associated with each column.

2. For each table in the database, a corresponding EGL source file is generated.

3. The collected database schema becomes a separate EGL project which is referred

to from other EGL projects.

4. A configuration file and a manifest file are generated.

5. Only Informix data types supported within the IBM Informix 4GL 7.32 release

are extracted. Any other data types are ignored.

I4GL Shared Libraries Conversion

If your I4GL application uses shared libraries, you must convert the shared

libraries after extracting the Informix Database Schema and before converting the

I4GL application. If your I4GL application has multiple shared libraries, you must

use the Conversion Utility to convert each shared library separately. In essence,

each shared library becomes a separate conversion project.

Because of the dependencies between the converted shared libraries and the I4GL

application, the I4GL application can only be converted after all I4GL shared

libraries have been converted.

Note: This I4GL Shared Library stage is not used for C Shared Libraries. For

information on the post-conversion processing of your C shared libraries,

see “Using C Shared Libraries with the EGL Program” on page 4-9.

To convert I4GL Shared Libraries:

1. From within the EGL Perspective in your Rational product, select File > New >

Other > Informix 4GL to EGL Conversion > I4GL Shared Library Conversion.

2. In the I4GL Shared Library Conversion Project screen, insert the following

information:

v Project Name. For example, Mysharedlibrary.

Note: The project names for database schema extraction and shared library

and application conversion should all be different.

v Project Details. Options include:

– New Project. A shared library project is considered New if it does not

have an existing configuration file. Selecting this option requires you to

provide the I4GL Source Directory and the EGL Source Directory. You can

browse to locate these directories.

Chapter 3. Conversion Tasks 3-3

– Open Project. A shared library project is considered Open if it has an

existing configuration file. Selecting this option requires you to provide

the location of the existing configuration file. You can browse to locate the

file.

– Reconversion Project. A shared library project is considered a

Reconversion if you previously completed an I4GL shared library project,

but the I4GL application conversion determines that a reconversion of

your shared library files is necessary. Selecting this option requires you to

provide the location of the existing configuration file and manifest files.

You can browse to locate the file.

Note: For information on when reconversion is necessary, see “When to

Reconvert Your I4GL Shared Libraries” on page 5-1.
v Conversion Artifacts. The Conversion Utility generates a number of artifacts

related to the conversion, including configuration, manifest and conversion

log files. By default, the Conversion Artifacts will be located in the

EGLDestinationDirectory/ConversionArtifacts directory. You can designate

to create the conversion artifacts in an external directory. You can browse to

an appropriate directory, but you cannot create a new directory at this time.
3. Click Finish to launch the shared library project conversion.

4. Click Yes to confirm and start the shared library project conversion.

5. The Shared Library Status screen confirms whether or not the conversion was

successful. If the conversion was successful, you can continue as appropriate

with another I4GL Shared Library conversion or with an I4GL application

conversion.

If the Shared Library Status message is not successful, you must repeat this

shared library conversion process from the beginning and correct any erroneous

information that you might have entered. For more information on why the

shared library conversion might have been unsuccessful, see “Correcting

Conversion Errors” on page 4-6.

Conversion Utility Processing for I4GL Shared Libraries

At the I4GL Shared Libraries stage, the launch of the I4GL2EGL conversion utility

initiates the following:

1. The Conversion Utility creates an individual EGL package for each of the I4GL

shared libraries.

2. The entire group of EGL packages are generated into an EGL project which can

then be referred to by other EGL applications.

3. Manifest files are generated for the EGL Project.

Note: I4GL shared libraries can also be converted using a command line mode.

However, this option is recommended for reconversion efforts only. For

instructions on how to use the command line mode, see “How to Reconvert

Your I4GL Shared Libraries” on page 5-1.

I4GL Application Conversion

Your I4GL application can be converted after the Informix database schema has

been extracted and all I4GL shared libraries have been converted.

To convert your I4GL application:

 1. From within the EGL Perspective in your Rational product, select File > New

> Other > Informix 4GL to EGL Conversion > I4GL Application Conversion.

3-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

2. In the I4GL Application Conversion Project screen, insert the following

information:

v Project Name For example, Myapplication.

Note: The project names for database schema extraction and shared library

and application conversion should all be different.

– New Project. A project is considered New if it does not have an existing

configuration file. Selecting this option requires you to provide the I4GL

source directory and the EGL source directory. You can browse to locate

these directories.

– Open Project. A project is considered Open if it has an existing

configuration file. Selecting this option requires you to provide the

location of the existing configuration file. You can browse to locate the

file.

Note: Although you can reconvert your shared libraries, you cannot

reconvert your I4GL application. If the conversion of your I4GL

application fails, you must resolve the errors as noted in the

Conversion Log and convert your I4GL application as a New or

Open project.
v Conversion Artifacts. The Conversion Utility generates a number of

artifacts related to the conversion, including configuration, manifest and

conversion log files. By default, the conversion artifacts are located in the

EGLDestinationDirectory/ConversionArtifacts directory. You can also

designate to create the conversion artifacts in an external directory. You can

browse to an appropriate directory, but you cannot create a new directory at

this time.
 3. Click Next to continue.

 4. The I4GL Conversion Project Files screen presents following information:

v Client Locale displays the information you provided during the database

schema extraction stage and is used to correctly convert message files. You

can not change your locale at this time.

v Project Files displays the folders, sub-folders and files located within the

I4GL source directory you entered in the previous I4GL Application

Conversion Project screen. You have the following options:

– Filter types. You can limit the files selected in the Project Files screen.

The Select Types dialog box provides a list of file types that are

currently supported in your Rational product. The .4gl, .per and .msg

files are selected by default. Enter message file extensions other than

*.msg in the Other Extensions text box.

– Select all will select all files within the root directory displayed on the

screen.

– Deselect all will deselect all folders, sub-folders and files within Project

Files.
v Click the boxes associated with the I4GL folders and files to be converted.

v Click Next to continue.
 5. The Locale for Message Files screen displays only if you selected message

files in the previous Project Files screen. The Locale for Message Files screen

displays your selected message files.

v Click Next to continue.
 6. The Cursor Scope and Report Font File screen confirms the status of the

database cursor scope and the I4GL reports font file location. If you want to

Chapter 3. Conversion Tasks 3-5

accept the defaults, you can skip this page. If you do not want to accept the

defaults, you must complete the following actions:

v The default for Database Cursor Scope is local. Select the Set SQL cursor

scope for conversion check box if you want to change the cursor scope to

global.

v The default for Set font file location for report is identified in “Reports” on

page 2-3. Check the Set font file location for report box if you do not want

to accept the default. In the Font file dialog box, enter or browse for the

location of the font file.

v Click Next to continue.
 7. The Database Schema Details screen confirms the existence of the database

schema needed for the conversion and the manifest file containing the schema

information. If your I4GL program does not contain a DATABASE statement,

no action is necessary for this screen.

This screen requires the following actions:

v Click the Dependent Database Schema box if you successfully completed

the database schema extraction stage.

v Enter the name of the Default Server.

v Click Add to display the Add Manifest File from Dependent Project box.

v Enter the location of the database schema Manifest File. This file is located

in the ConversionArtifacts directory that you created during the database

schema extraction stage.

v Select OK to continue.

v The Project Name and the Database Schema Extraction Manifest File

location now display on the screen. You can add to, delete or edit this

information by clicking the Add, Delete or Edit buttons.

v Click Next to continue.
 8. The Conversion Project Dependencies screen identifies all EGL packages

(former I4GL shared libraries) upon which the converted application depends.

As appropriate, select the box for:

v Dependent I4GL Shared Library Projects

– Click Add to display the Add Manifest File from Dependent Project

box.
– Enter the location of the database schema Manifest File. It is located in

the ConversionArtifacts directory that you created during the I4GL

shared library conversion stage.

– Select OK to continue.

– The I4GL Shared Library Project Name and manifest file location now

display on the screen. You can add to, delete or edit this information by

clicking the Add, Delete or Edit buttons.
 9. Click Next.

10. Conversion Project Details. If your project is a New Project, you can review

the configuration file, an .xml document that coordinates all of the project

details entered in the previous screens. At this stage of the conversion process,

the manifest file and the Conversion Report screens are not populated with

information. If your project is an Open or a Reconversion Project, this screen

displays the populated manifest file and conversion report.

11. Click Finish to initiate the conversion.

12. Click Yes to launch the I4GL2EGL conversion program.

3-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Conversion Utility Processing for I4GL Application Conversion

At the I4GL application stage, the launch of the I4GL2EGL conversion utility

initiates the following:

 1. The parser converts the selected I4GL application source files.

 2. A manifest file containing function calls, function arguments, global variables

and other information is created.

 3. The converted I4GL shared libraries and the I4GL source code manifest files

from dependent shared library projects are reviewed for consistency and

possible errors.

 4. Each message file is read and converted to the appropriate .properties file

using the equivalent Java code page.

 5. If the current project defines an EGL function with a name previously

assumed to be an external function, the conversion program updates and

modifies the dependent I4GL shared library project manifest file, terminates

the conversion, and reports the error in the conversion error log. At this point,

you must reconvert the I4GL shared library using the updated manifest file.

 6. All .4gl, .per, .msg, and any customized error messages files are converted to

EGL.

 7. Any I4GL errors are identified, and the conversion program generates an .err

file within the EGL destination directory and updates the log file with the

error information.

 8. If the conversion is successful, a default EGL build descriptor file is generated

in EGLdestinationdirectory/project name/EGLSource. This file is named project

name.eglbld. If a file by this name already exists in the EGL destination

directory, the Conversion Utility does not create a new file to override the

existing file.

 9. If the program being converted has C library dependencies, the conversion

utility identifies each C function call and generates a function table. The

function table is named NativeFuncTab.c and is located in the

ConversionArtifacts/NativeLibrary directory. For more information on the

function table, see “Function Table” on page 4-9.

10. The conversion log is created and populated with conversion statistics and

details.

11. The conversion log file automatically opens for viewing.

12. Click Cancel to terminate the Wizard.

Conversion Utility Command Line Mode

Instead of using the Conversion Utility Wizard to convert your I4GL applications

to EGL, you can use the Conversion Utility command line mode. However, since

using the command line mode for the initial conversion process requires you to

manually create a configuration file, you might find it easier to use the command

line mode primarily for shared library reconversion, when an existing

configuration file can be used.

The command line option is invoked through a script named e4gl, which is located

in the productinstallation/bin directory.

This script is found in the following directory:

v Linux:

/opt/IBM/Rational/SDP/6.0/bin

v Windows:

Chapter 3. Conversion Tasks 3-7

C:\Program Files\IBM\Rational\SDP\6.0\bin

Prior to using the command line script, you must create a configuration file for

your conversion project. Your configuration file must be in .xml format and follow

exactly the Data Type Definition (DTD) provided in the sample configuration file.

You should not create a configuration file without using the sample file as a

template.

To create a configuration file:

1. Locate the sample configuration file in the following directory:

plugins/com.ibm.etools.i4gl.conversion_version/etc/dtd/Configuration

2. Open the file in an .xml editor, rename the file, and save it to the preferred

directory.

3. Your new file contains a DTD which provides intuitive .xml tags. Use these

tags to insert your information into the file.

4. Save the file.

To use the command line option:

1. From the command line, enter the following, where configurationfile is the name

of your newly-created configuration file:

e4gl configurationfile

If your configuration file does not reside in the current working directory, you

must qualify it with an absolute directory path.

For information on how to use the command line utility to convert an I4GL

application, see “Command Line Reconversion” on page 5-2.

Note: If the script is moved from the default productinstallation/bin directory, the

RAD_HOME environment variable (which is used by the script to locate the

conversion .jar files) must be set to point to the root directory of your

Rational product installation.

The Conversion Log

At the end of the I4GL to EGL conversion, the conversion log opens for display.

The log contains conversion details, including information about warnings, fatal

errors, shared libraries and source file conversion status. The conversion log is

primarily used to identify conversion errors. For more information on how to use

the conversion log to resolve conversion errors, see “Correcting Conversion Errors”

on page 4-6.

3-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 4. Post-Conversion Tasks

In This Chapter . 4-1

Post-Conversion Tasks . 4-2

Changes Made During the Conversion . 4-2

Artifacts Generated During the Conversion . 4-3

Configuration File . 4-4

Manifest File . 4-5

Source File Conversion Mapping . 4-5

Command Line Conversion: Importing Projects into the Workspace 4-6

Correcting Conversion Errors . 4-6

Conversion Log Contents . 4-7

Using C Shared Libraries with the EGL Program . 4-9

EGL Native Library . 4-9

Function Table . 4-9

Creating the Application Level Shared Library . 4-10

Properties Files . 4-11

Validating and Compiling Converted EGL Files . 4-12

Generating EGL to Java . 4-13

Understanding Error Message Conversion . 4-14

Understanding Report Conversion . 4-14

EGL Report Driver Functions . 4-15

I4GL Report Sections . 4-16

I4GL DEFINE Section . 4-16

I4GL OUTPUT Section . 4-18

I4GL ORDER BY Section . 4-19

I4GL FORMAT Section . 4-19

Understanding your EGL Projects, Packages and Files . 4-27

EGL Project . 4-27

EGL source folder . 4-28

EGL build path . 4-28

Default build descriptors . 4-28

Package . 4-28

EGL Files . 4-29

Source file . 4-29

Build File . 4-29

Recommendations . 4-30

For build descriptors . 4-30

For packages . 4-30

Part assignment . 4-30

The Information Center Help System and EGL Tutorial . 4-31

In This Chapter

This chapter describes the changes made by the Conversion Utility to your I4GL

application, the artifacts generated during the conversion, how to correct

conversion errors, and how to use the C shared libraries with your EGL

application. This chapter also provides information on how to use the EGL

information center online help system.

© Copyright IBM Corp. 2005 4-1

Post-Conversion Tasks

Before using your converted EGL program, you should review or implement the

following tasks and information as appropriate:

v “Changes Made During the Conversion.”

v “Artifacts Generated During the Conversion” on page 4-3.

v “Source File Conversion Mapping” on page 4-5

v “Command Line Conversion: Importing Projects into the Workspace” on page

4-6.

v “Correcting Conversion Errors” on page 4-6

v “Using C Shared Libraries with the EGL Program” on page 4-9

v “Properties Files” on page 4-11

v “Validating and Compiling Converted EGL Files” on page 4-12

v “Generating EGL to Java” on page 4-13

v “Understanding Error Message Conversion” on page 4-14

v “Understanding Report Conversion” on page 4-14

v “Understanding your EGL Projects, Packages and Files” on page 4-27

v “The Information Center Help System and EGL Tutorial” on page 4-31

Changes Made During the Conversion

During the three stages of the I4GL to EGL conversion, the following changes

occur:

v The Conversion Utility creates a new root directory structure to host the

converted EGL source files in the EGL destination directory. A workspace

resource folder was also created, which by default, has the following

subdirectory: EGLDestinationDirectory/ProjectName/EGLSource/ProjectName.

v If the converted application is dependent upon any C shared libraries, EGL

native libraries and a function table are generated. For information about how to

use the EGL native library and the function table to create the link between your

C shared libraries and EGL program, see “Using C Shared Libraries with the

EGL Program” on page 4-9.

v An EGL project build descriptor file is created and used to build the converted

.egl files in the EGL Perspective.

v I4GL syntax constructs are mapped to EGL syntax. For a complete mapping

between I4GL and EGL, see Appendix A, “I4GL to EGL Syntax Mapping,” on

page A-1.

v All .4gl source files are converted into .egl source files.

v All I4GL .per form specification files are converted into .egl Console User

Interface specification files.

Note: In EGL, all files are .egl files. For a complete mapping between I4GL and

EGL files, see “Source File Conversion Mapping” on page 4-5.

v I4GL customized error message files are migrated to EGL. For information about

those error message files, see “Understanding Error Message Conversion” on

page 4-14.

v I4GL report logic is converted into equivalent EGL and JasperReports format.

For information on your converted reports, see “Understanding Report

Conversion” on page 4-14. To review a mapping between I4GL and EGL, see

“4GL Report Execution Statements” on page A-11 and “I4GL Report Driver

Statements” on page A-11.

4-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Note: If your I4GL program did not contain report functionality, you can still

add that functionality to your converted program. For information on

how to create new reports in your EGL project, see the EGL Report help

topics in the information center.

Artifacts Generated During the Conversion

The Conversion Utility generates two broad categories of conversion artifacts:

v Project-specific artifacts, such as configuration and manifest files.

v Error files, which are generated from the syntax errors in I4GL input files.

The error files are placed into the same directory used by the input I4GL file. By

default, all other conversion artifacts are placed in the

EGLDestinationDirectory/ConversionArtifacts directory. You may designate a

different directory location during the database schema extraction or I4GL shared

library conversion stage of the Conversion Utility.

The Conversion Artifacts directory contains the following sub-directories:

1. /config. Placeholder for the Conversion Utility to generate a configuration file

for New projects.

2. /manifest. Placeholder for the Conversion Utility to generate a manifest file for

the current conversion projects.

3. /log. Placeholder for the Conversion Utility to generate conversion log files for

the current conversion project.

4. /NativeLibary. Placeholder for the Conversion Utility to generate the function

table used to link C shared libraries to EGL.

The Conversion Utility generates the following artifacts:

 Table 4-1. Artifacts (Documents) generated by the Conversion Utility

Artifact File name Description

Configuration file ProjectNameProjectTypeConfig.xml

For example,

MyDatabaseSchemaConfig.xml

Contains project, database schema, directory,

and file information.

For more information, see “Configuration

File” on page 4-4.

Conversion log ProjectNameProjectTypeLog.txt
ProjectNameProjectTypeLog.html

Contains project information, including

conversion errors and warnings, lists of

dependent libraries, and the source file

conversion status. This log is the primary

source of information for unsuccessful

conversions. Unless a fatal error stops the

conversion process, this log is generated for

both successful and unsuccessful

conversions. For complete information, see

“Correcting Conversion Errors” on page 4-6.

EGL Native Library See “EGL Native Library” on page 4-9. Contains the prototypes for the C functions

encountered during the conversion of an

I4GL shared library or application.

ERR file sourcefilename.err
sourcefilenameForm.err

Identifies errors found during the conversion

of I4GL source syntax to EGL.

Function Table See “Function Table” on page 4-9. Contains the names of all of the C functions

encountered during the conversion of an

I4GL application.

Chapter 4. Post-Conversion Tasks 4-3

Table 4-1. Artifacts (Documents) generated by the Conversion Utility (continued)

Artifact File name Description

Manifest file ProjectNameProjectTypeManifest.xml Contains the project-specific information

required to resolve dependencies. For a

Database Schema Extraction project, the

manifest file contains table/column

information. For a Shared Library or I4GL

Application project, the manifest file contains

function calls and return types, global

variables, form names, record types, package

names, and other information. For more

information, see “Manifest File” on page 4-5.

Note: The Conversion Utility generates file names as presented in the table above.

If, during conversion, the Conversion Utility encounters these filenames in

the Conversion Artifacts directory, it renames the existing file as

filename.bak.num where num is a sequentially-increasing number starting

with 1. The Conversion Utility names the new file as described in Table 4-1

above.

Configuration File

During each of the three Conversion Utility stages, the utility compiles specific

project, database schema, directory, and file information into the individual

configuration file. Therefore, the configuration file stores all of the critical

information about your conversion and should be referred to as necessary.

Each file is named after the utility stage that generates it. If, for example, you call

your Database Schema Extraction project MyDB, the configuration file for that

stage of the Conversion Utility is named MyDBSchemaConfig.xml.

If you prefer to convert your I4GL project outside the Rational environment, you

can manually create a configuration file. A sample configuration file and the DTD

are included in the product. If you manually create the configuration file, you must

ensure that it conforms to the product configuration file DTD.

The sample configuration file is named conversionsample.xml and the DTD is

named conversionconfig.dtd. Both are located in the following directory:

productinstallation/egl/eclipse/plugins/com.ibm.etools.i4gl.conversion_version/

etc/dtd

Sample configuration files for the Database Schema Extraction project and the I4GL

Application project are located in the following directory:

productinstallation/egl/eclipse/plugins/com.ibm.etools.i4gl.conversion_version/

etc/examples/Configuration

Note: When you use the Conversion Utility Wizard, the Conversion Utility

automatically generates a configuration file. The sample configuration files

listed in the etc directory are template files that can be modified to your

project specification. If you use the template files, you must ensure that you

follow the DTD and create well-formed and valid XML documents. When a

manually-edited configuration file that does not meet XML specifications is

provided, the conversion terminates.

4-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

For an example of a configuration file template, see Appendix D, “Configuration

File Templates.” For an example of the DTD used for configuration and manifest

files, see Appendix F, “DTD Examples.”

Manifest File

A stage-specific manifest file is generated during all three conversion stages.

The manifest file generated during extraction of the database schema contains

information about all of the tables, columns and data types of the selected

database. This file is used by the conversion utility to resolve column names and

data types between I4GL and EGL.

The manifest file generated during conversion of the I4GL shared library contains a

list of I4GL and assumed C function calls used in the I4GL converting project. This

file is used during the I4GL application conversion stage to validate all function

calls used in dependent EGL Packages and I4GL source code.

Note: The Conversion Utility also generates a manifest file for I4GL application

conversion projects. However, the application manifest file is generated for

reference only, and provides a list of the technical details of the project.

For an example of a manifest file, see Appendix E, “Manifest File Examples.”

Source File Conversion Mapping

During the conversion process, your I4GL program files were mapped to

equivalent EGL project files. Table 4-2 provides the mapping between those files.

 Table 4-2. How I4GL Files Convert into EGL Files

File and library type I4GL file extension EGL file extension

Source files .4gl .egl

Form specification files .per

For an example of how I4GL form

files convert to EGL, see

Appendix C, “I4GL Form Code to

EGL Form Code Example.”

.egl

The constant string Form is added to all

converted form specification file names; for

example, an I4GL file named someFile.per is

named someFileForm.egl in EGL.

Report files .4gl .egl

Note: I4GL report design logic converts into

a JasperReports .jrxml file. For more

information on report file conversion, see

“Understanding Report Conversion” on page

4-14.

Customized Error Message

files

.msg or any other extension .properties

Shared library created from

I4GL source files

.so or other platform equivalent

extension

EGL Packages

Build utility files makefile .eglbld, the EGL build descriptor file

Chapter 4. Post-Conversion Tasks 4-5

Command Line Conversion: Importing Projects into the Workspace

The Conversion Utility Wizard automatically imports your converted project into

the workspace within the EGL Projects category. If you used the command line

option to convert your project, you must import your project into EGL Projects

manually. You must import your Database Schema, Shared Library and Application

projects individually.

To import your Database Schema, Shared Library, or Application project:

1. In the EGL perspective, right-click anywhere in the Project Explorer workspace.

2. From the menu, select Import.

3. From the Import Wizard, select Existing Project into Workspace. Select Next.

4. In the Project Contents text box of the Import Project from File System

window, select Browse.

5. In the Browse For Folder window, select the EGL destination directory of your

converted project. Select OK to exit the Browse For Folder window. Select

Finish to exit the Import Project from File System window.

Note: The Conversion Utility creates .project, .eglPath, and .classpath files in

the EGL destination directory. These files are used by your Rational

product to identify the project. If these files are missing, the project

cannot be imported into the workspace.

6. Your selected directory now displays in the Import Wizard within Project

Contents. The project name displays in Project Name.

Note: If your Rational product does not locate the .project file in your selected

directory, an error is returned. You must verify that your directory has

that file before you can continue.

7. Click Finish. Your project should now be visible in the workspace.

Correcting Conversion Errors

The Conversion Utility generates a conversion log to help you understand the

status of your conversion project and assist you in correcting any conversion

errors. The Conversion Utility saves this conversion log to your designated

artifacts directory log sub-folder. This file can be identified by the name

ProjectNameProjectTypeLog.html, where ProjectType can be Schema, Library or

Application. In addition to the .html file, a .txt file is generated.

Your conversion project can be classified as either PASSED or FAILED. The

PASSED classification means that the conversion was successful and your EGL

code is available for use.

The project is classified as FAILED when one or more EGL source files cannot be

generated. Your project might fail for any of the following reasons:

v The Conversion Utility did not have permission to write to the identified EGL

source directory or conversion artifacts directory.

v The XML configuration file or the dependent manifest file contain errors.

v For a Database Schema Extraction project, the JDBC driver terminates the

process if you do not have connection permission to the database, provide an

incorrect password, or if any other exception is noted.

4-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

v For a Shared Library or I4GL Application project, the conversion terminates if

any source file listed in the configuration file does not have read permission or

is missing.

v The I4GL syntax could not be converted into EGL syntax.

If your project fails during the validation stage, the conversion terminates. The

validation stage includes validation of the XML configuration file, manifest file,

source files, JDBC connection, and write and read permissions. If your project fails

due to syntax errors in I4GL source files, the conversion continues, but the project

is marked FAILED. If your project fails during any other stage, the conversion

continues. In both of these cases, a conversion log is generated. A FAILED project

must be converted from the beginning again.

After correcting all conversion errors, all FAILED projects must go through the

conversion process again. If you use the Conversion Wizard for this process, you

should select the Open Project option, which enables you to use your existing

configuration file.

Note: Converting a FAILED project is not the same as reconverting a Shared

Library. With a FAILED project, you must follow the three-stage Conversion

Wizard path: Database Schema Extraction, Shared Libraries Conversion, and

I4GL Application Conversion. When a shared library needs reconversion,

you need only use the Shared Libraries path.

In addition, individual files can be classified as one of the following:

v PASSED. Confirms the file converted correctly; no user action necessary.

v ERROR. Identifies that the entire conversion failed and often explicitly identifies

how it failed; you must reconvert the I4GL program using the Conversion

Wizard.

v FIXME. Identifies that one or more stages of the conversion failed, but that

conversion through the Conversion Wizard is not necessary. The information

from this classification provides you with enough information to fix the problem

with the converted files manually while in the EGL Perspective. Within your

EGL code, each FIXME is identified with a FIXME tag, for example: //FIXME:. In

addition, each FIXME and TODO includes a line and column reference to the

original I4GL file.

In addition to identifying a FIXME in the EGL code, each FIXME is listed within

the EGL Tasks view. Use the information for each FIXME to correct your code.

v TODO. Identifies that the conversion passed, but with warnings; you can ignore

the warnings or address each one manually while in the EGL Perspective. You

should verify each of these warnings.

Conversion Log Contents

The conversion log contains the following information:

v Conversion Status. This section includes:

– Project status

– Conversion date

– User name

– Host

– OS version
v Project Details. This section includes:

– Project name

Chapter 4. Post-Conversion Tasks 4-7

– Directory information

– Conversion type

– Default Informix server instance
v Conversion Artifacts. This section includes the file names of the conversion

artifacts.

v I4GL Source File Conversion Summary. This section lists the number of I4GL

source files provided as input and the number of files converted into EGL as

output. Occasionally, the number of EGL files exceeds the number of I4GL files.

v Source File Conversion Details. This section is present only for Shared Library

and Application projects, and identifies the following:

– Names of the input I4GL source files and the output EGL source files.

– Conversion status of each file.

– As appropriate, the location of the ERR file.
v Exceptions. This optional section identifies any conversion problems, including

unsupported syntax warnings, fatal and non-fatal errors, and possible

Conversion Utility internal functional failure exceptions. This section can record

the reconversion requirements identified during your Application project

manifest file consistency check.

v Database Connection Details. This section is present only for Database Schema

Extraction projects, and identifies the following:

– Server name

– Database name

– Table name

– Corresponding EGL source file extracted for this table

Note: For both the database extraction and the source file conversion details

section above, the .html version of the conversion log has hyperlinks to the

input and output files and directories.

Once the conversion has completed, the log file is displayed in the Report Tab. If a

default browser is located on the system, the Conversion Utility automatically

opens the browser and the conversion log for viewing. You should review the

contents of the log file soon after the conversion completes. You must understand

the contents of the log file to correct any conversion errors or warnings.

If you use the command line mode, the conversion status is displayed in the

console or shell window where the Conversion Utility is invoked. The log files are

generated in the EGLDestinationDirectory/ConversionArtifacts/log directory. You

must open this file for viewing.

Note: The conversion log also displays errors returned by your JDBC driver. If

your driver provides an error description, that description is extracted from

the driver and appears in the conversion log; if your driver does not

provide an error description, only the error number provided by the JDBC

driver displays in the conversion log.

In addition to the file information contained within the conversion log, the

Conversion Utility also generates an ERR file to identify the I4GL syntax

statements that did not convert successfully to EGL. With the ERR file information,

you can correct the syntax errors in your I4GL code, and then reconvert your I4GL

application. For .4gl files, the ERR file is named sourcefile.err. For .per files, the

ERR file is named sourcefileForm.err.

4-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

For an example of a conversion log, see Appendix G, “Conversion Log Examples.”

To review a list of Conversion Utility error messages, see Error Messages.

Using C Shared Libraries with the EGL Program

If your I4GL program had shared libraries, one of your pre-conversion tasks was to

review each library to identify whether it was compiled from .4gl source files, .c

source files, or both. For a shared library compiled from both .4gl and .c source

files, you segregated the .c files and compiled them into a C shared library. In

addition, you might have identified some shared libraries that were originally

compiled from only .c source files, or some pre-existing static libraries consisting of

object files compiled from .c source files. This section explains how an application

level shared library is created and linked with the variety of C libraries that you

have identified.

During the conversion of an I4GL shared library or application, prototypes of the C

functions encountered in that project were defined in an EGL native library created

for that project. At the end of the I4GL application conversion, a function table

identifying all the C functions was generated. These components are also explained

in this section.

EGL Native Library

During the conversion of an I4GL shared library or application, prototypes of the C

functions encountered in that conversion project are defined in an EGL native

library created for that project. This library consists of function prototypes with no

function body. The C functions are defined inside the C libraries, and the EGL

native library is used to avoid validation errors in the EGL IDE. The name of the

native library is CExternals, and it is created in the

EGLDestinationDirectory/ProjectName/EGLSource/CExternals directory.

For complete information about the EGL native library, see the Library part of type

nativeLibrary help topic.

Function Table

The function table is generated at the end of the I4GL application conversion stage.

It is a C source file that includes the names of all C functions called from the EGL

program. The function table is named NativeFuncTab.c and is located in the

EGLDestinationDirectory/ConversionArtifacts/NativeLibrary directory.

In the following function table example, c_fun1 and c_fun2 are names of the C

functions.

#include <stdio.h>

struct func_table {

 char *fun_name;

 int (*fptr)(int);

};

extern int c_fun1(int);

extern int c_fun2(int);

/* Similar prototypes for other functions */

struct func_table ftab[] =

 {

 "c_fun1", c_fun1,

Chapter 4. Post-Conversion Tasks 4-9

"c_fun2", c_fun2,

 /* Similarly for other functions */

 "", NULL

 };

You must modify both the function table and the EGL application code if the

following occur:

1. The name of an existing C function is changed. In addition to changing the

function invocation statement in your EGL code, you must also change the

following:

v the name of the C function in the function table.

v the function prototype must be defined in the EGL native library

corresponding to each of the projects from which the function is invoked.
2. A new C function is added. Change both of the following:

v the name of the new C function must be added to the function table

v the function prototype defined in the EGL native library corresponding to

each of the projects from which the function is involved.

Note: If two C functions share the same name, the actual function call depends

upon the shared library linking sequence.

Creating the Application Level Shared Library

This section explains how to create an application level shared library and how to

link it with the C libraries that have been identified or created during

pre-conversion.

There are two parts to creating the application level shared library:

1. Download the EGL stack library and application object file from the IBM

website to your computer.

2. Compile the function table and the appropriate platform-specific application

object file into an application level shared library, and link this shared library

with the appropriate platform-specific stack library and the C libraries

identified or created during pre-conversion.

To download the EGL stack library and application object file:

1. The stack library is used to pass or return values between the EGL code and

the C code. The pop and return APIs used in the C code are resolved in the

stack library. The application object file acts as an interface between the EGL

program and the C code. Note that both the stack library and the application

object file are platform-specific components.

a. Locate the EGL Support website.

The URL for Rational Application Developer is www3.software.ibm.com/

ibmdl/pub/software/rationalsdp/rad/60/redist

The URL for Rational Web Developer is www3.software.ibm.com/

ibmdl/pub/software/rationalsdp/rwd/60/redist

b. Download the EGLRuntimesV60IFix001.zip file to your preferred directory.

c. Unzip EGLRuntimesV60IFix001.zip to identify the following files:

For the platform-specific stack libraries:

v AIX 32-bit: EGLRuntimes/Aix/bin/libstack.so

v AIX 64-bit: EGLRuntimes/Aix64/bin/libstack.so

v Linux: EGLRuntimes/Linux/bin/libstack.so

4-10 IBM Informix 4GL to EGL Conversion Utility User’s Guide

v Win32:

– EGLRuntimes/Win32/bin/stack.dll

– EGLRuntimes/Win32/bin/stack.lib

v Solaris 32-bit: EGLRuntimes/Solaris/bin/libstack.so

v Solaris 64-bit: EGLRuntimes/Solaris64/bin/libstack.so

v HPUX 32-bit: EGLRuntimes/HPUX/bin/libstack.sl

v HPUX 64-bit: EGLRuntimes/HPUX64/bin/libstack.sl

For the platform-specific application object files:

v AIX: EGLRuntimes/Aix/bin/application.o

v AIX 64-bit: EGLRuntimes/Aix64/bin/application.o

v Linux: EGLRuntimes/Linux/bin/application.o

v Win32: EGLRuntimes/Win32/bin/application.obj

v Solaris 32-bit: EGLRuntimes/Solaris/bin/application.o

v Solaris 64-bit: EGLRuntimes/Solaris64/bin/application.o

v HPUX 32-bit: EGLRuntimes/HPUX/bin/application.o

v HPUX 64-bit: EGLRuntimes/HPUX64/bin/application.o

To create the application level shared library:

1. The following two artifacts must be compiled into the application level shared

library and linked with the stack library and the libraries identified or created

during pre-conversion:

v the function table created by the Conversion Utility

v the application object file
2. Compile the new shared library using the following example, where

NativeFuncTab.c is the name of the function table, lib1/lib2 and so forth are

the names of the C libraries identified or created during pre-conversion and

lib_dir1/lib_dir2 and so forth are the respective directory locations of those

libraries.

v On AIX:

cc -c NativeFuncTab.c

ld -G -b32 -bexpall -bnoentry -brtl NativeFuncTab.o application.o

-Lstack_lib_dir -lstack -Llib_dir1 -llib1 -Llib_dir2 -llib2 -o

app_lib_name -lc

v On Linux:

cc -c NativeFuncTab.c

gcc -shared NativeFuncTab.o application.o -Lstack_lib_dir -lstack

-Llib_dir1 -llib1 -Llib_dir2 -llib2 -o app_lib_name

v On Windows:

cl /c NativeFuncTab.c

link /DLL NativeFuncTab.obj application.obj /LIBPATH:stack_lib_dir

/DEFAULTLIB:stack.lib /LIBPATH:lib_dir1 /DEFAULTLIB:lib1.lib

/LIBPATH:lib_dir2 /DEFAULTLIB:lib2.lib /OUT:app_lib_name

When running the EGL application, this application level shared library is specified

using the vgj.defaultI4GLNativeLibrary Java runtime property.

Properties Files

The properties of your converted EGL project are defined in one of three files, each

of which have a .properties file extension. You must enter your I4GL environment

variables into one of the following files as appropriate:

Chapter 4. Post-Conversion Tasks 4-11

v user.properties, located in your home directory. This file identifies user-specific

data like user and password.

v programname.properties, located in the CLASSPATH. Each converted I4GL

project can have a file with this name. Properties and values in this file are

customized to include values for all users.

v rununit.properties, located in the CLASSPATH. This file identifies information

which is needed at runtime.

If a same-named property is set in any one of the files, the property in the file

user.properties is used. The search order for properties is user.properties,

programname.properties, and rununit.properties.

For a mapping of I4GL environment variables, EGL properties, and JDBC

properties, see “Environment Variables” on page A-19.

The values bulleted below should be defined in at least one of the .properties files.

The values in the example assume that the EGL application references a database

named stores7, that it supports switching servers based on INFORMIXSERVER

values, and that the server connection is enabled without a password through

.rhosts, and that the application and the database server are not running on the

same UNIX host.

v INFORMIXSERVER=myserver

v DEFAULT_USER=id

v DEFAULT_PASSWORD=pw

v stores7@myserver=jdbc:informix-
sqli://host:port/database:INFORMIXSERVER=myserver;

If the application and the database server are running on the same host,

DEFAULT_USER or DEFAULT_PASSWORD are not required.

If the application and the database server are operating on different UNIX hosts,

you can specify the application host in the .rhosts file of the database server host.

You do not need to specify the DEFAULT_USER and DEFAULT_PASSWORD

values.

If the application does not require a value for INFORMIXSERVER,

INFORMIXSERVER can be omitted as a separate value. If the application directly

supplies userid and password values through the CONNECT statement, the

DEFAULT_USER and DEFAULT_PASSWORD values can remain unspecified.

For more information on .properties files, see the genProperties and Java runtime

properties help topics. For more information on specifying JDBC URLS for your

IBM Informix DBMS server, review the IBM Informix JDBC documentation

available at http://www.ibm.com/software/data/informix/pubs/library/.

Validating and Compiling Converted EGL Files

Your converted EGL source files must be validated and compiled. These steps are

only required for I4GL Application and Shared Library projects and are not

necessary for Database Schema Extraction projects. You must have the IBM

Informix JDBC driver installed in your system before attempting this process.

4-12 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Note: The Conversion Utility generates a template build descriptor file for each

converted project. This file is located in the EGLSource directory and

follows the naming convention of Projectname.eglbld.

To validate and compile the converted EGL source files:

1. From within the Project Explorer view, select and right-click Projectname.

2. From the menu provided, select Properties.

3. In the left box of the Properties for Projectname window, select EGL Build

Path. In the tabbed Projects section, select all of listed dependent projects.

4. In the left box, select EGL Default Build Descriptors.

5. In the Target system build descriptor field of the EGL Default Build

Descriptors section, select the down arrow. This displays all of the EGL build

descriptor files available in the workspace.

6. Select your build descriptor, that is the file following the naming convention of

Projectname.eglbld. Select OK. The automatic EGL build process initiates.

7. If your project requires database connectivity for testing, in the left box, select

Java Build Path. Select the Libraries tab.

8. Select the Add External JARs... button. In the JAR Selection window, browse

through the file system and locate the appropriate JDBC driver JAR files. Click

OK. The selected JAR files appear in the Libraries tab.

Note: For an example of an EGL build descriptor, see Appendix H, “EGL Build

Descriptor Example.”

Generating EGL to Java

Before you generate your EGL files to Java, you must:

v Identify and resolve all TODO and FIXME messages. For more information,

see“Correcting Conversion Errors” on page 4-6.

v Identify and resolve any validation errors. You cannot generate your EGL files to

Java until all validation errors have been resolved.

v Create a .properties file for your JDBC connection information.

v As appropriate, add your database connection information to the

Projectname.eglbld file.

To add your database connection information to the Projectname.eglbld file:

1. In the Project Explorer view, right-click on your Projectname.

2. Within the EGLSource directory, double-click on the Projectname.eglbld file.

3. The Projectname.eglbld file opens in a tabbed window. Check the Show only

specified options box.

4. As appropriate, click on the existing option Value and enter your connection

information for the following options:

v sqlDB

v sqlID

v sqlPassword

v sqlValidationConnectionURL
5. Close the window tab to accept the changes.

To generate EGL to Java:

1. In the Project Explorer view, right-click on your Projectname.

Chapter 4. Post-Conversion Tasks 4-13

2. From the menu, select Generate.

3. The Generating EGL Parts window displays, and closes when generation

completes.

To run the generated Java program with a database connection, you must create a

.property file as described in “Properties Files” on page 4-11.

Your Java source files are located in the JavaSource folder in the project

workspace. For more information on generating your EGL files, see the Generating,

preparing and running EGL output help topic.

Understanding Error Message Conversion

The Conversion Utility converts I4GL error messages into Java properties files and

places all of the converted message files into the following directory:

EGLDestinationDirectory/MessageSource

A comparison between an I4GL error message file and the resultant Java properties

format is seen in Table 4-3 below.

 Table 4-3. Comparison of I4GL message to Java Properties file formats

I4GL message file format EGL message file format

. message-number message-text message-number=message-text

Message files in English (en_us) are converted into a Java .properties file with no

language extension. Message files in other code pages generate a code page

extension as part of the message file name and are appended with an extension of

_locale name.properties. This extension differentiates locale-specific message files

from each other. For example, a I4GL message file named MyMessage.msg file is

converted to the following names:

In English: MyMessage.properties

In Chinese: MyMessage_zh_TW.properties

Understanding Report Conversion

EGL Reports use the functionality of JasperReports, an open source reporting

library written in Java. Thus, during conversion to EGL, some I4GL code,

functions, and files are changed.

During the conversion of your I4GL application, the following changes occurred to

your I4GL report code:

v I4GL program files were converted into EGL program files. For example, the

I4GL file named myreport.4gl is now the EGL file myreport.egl.

v A single I4GL REPORT function was converted into four EGL functions. For

example, an I4GL report file named myreport.4gl with a REPORT function of

REPORT my4glReport(a, b, c) was converted into an EGL report file named

myreport.egl with the following functions calls:

– my4glReport_START()

– my4glReport_OUTPUT(a, b, c)

– my4glReport_FINISH()

– my4glReport_TERMINATE()

4-14 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Together, these four EGL functions act as a single report driver function in EGL.

v The business logic in an I4GL report was converted and moved into an EGL

report handler file. The report handler is an EGL report component that

provides the logic for handling events occurring during the filling of the report.

If your I4GL report was named my4glreport, the EGL report handler file is

named my4glreport_handler.egl.

v The presentation logic in an I4GL report is converted and moved into a

JasperReports XML design file. This converted file contains the report layout

template converted from your I4GL report.

If your I4GL report is named my4glreport, the JasperReports XML file is named

my4glreport_XML.jrxml. If your I4gl report contains multiple looping constructs

containing output logic, each looping construct block is moved over to a

subsequent sub-report. The filename of each subsequent report is identified with

the word SUB and a sequence number. For example, the first subsequent report

is named my4glreport_XML_SUB1.jrxml.

EGL Report Driver Functions

As mentioned above, during the I4GL to EGL conversion a single I4GL REPORT

function is replaced with four EGL functions. Information on how each of those

EGL functions map to I4GL syntax is included in Table 4-4 below.

 Table 4-4. EGL Report Driver behavior

EGL Function

Corresponding I4GL

statement Behavior in EGL

reportname_START() START REPORT While the converted EGL program is running, this

function creates a temporary table in the default or

active database of the EGL application. Parameters

received by the I4GL report function are added as a

column in the temporary table. In addition, with the

exception of array variables, all global variables used

by the I4GL report are added as a column to this

temporary table.

reportname_OUTPUT()

reportname_OUTPUT(a, b, c)

OUTPUT TO REPORT This function collects all of the arguments passed to

it and any other global variables used by the I4GL

report function for the report and adds their current

value as a row to the temporary table. Typically, a

number of calls must be made to pass all of the

report data.

Note: If the converting I4GL report does not receive

any arguments or does not use global variables

(other than array variables), this function inserts a

placeholder row for the global variables into the

temporary table.

Chapter 4. Post-Conversion Tasks 4-15

Table 4-4. EGL Report Driver behavior (continued)

EGL Function

Corresponding I4GL

statement Behavior in EGL

reportname_FINISH() FINISH REPORT This function does the following:

v Initializes the report library

v Passes a SELECT statement referring the

temporary table to the EGL report library; the

result set generated serves as the datasource for

the JasperReports engine.

v Uses the EGL API to fill the JasperReports.

v Uses the EGL JasperReports text exporter to export

the JasperReports to text format.

After the report has been generated, this function

drops the temporary table which was used to store

the report data.

reportname_TERMINATE() TERMINATE REPORT This function drops the temporary table and stop the

report processing.

Note: When processing reports, the generated EGL report driver functions always

assume that an active database is available. If an active database is not

available, you must modify the report driver function code to use an EGL

dynamic array of records to collect and pass the data to the JasperReports

engine.

Since global array variables are not added to the temporary table, an I4GL report

code using global array variables might not produce the expected results when

converted to EGL. To achieve the expected results, you might need to modify your

EGL report.

While I4GL reports were processed on a line by line basis, in EGL all report data

were collected in a temporary table and then processed. Report data is only

processed when all data is collected in the temporary table and

reportname_FINISH() is called. Thus, if there is a dependency between the data

inside the report and I4GL report driving function, some reports do not produce

correct results.

I4GL Report Sections

This section explains the conversion to EGL of the following four I4GL report

sections:

v DEFINE

v OUTPUT

v ORDER BY

v FORMAT

I4GL DEFINE Section

In I4GL, the DEFINE section declares a data type for each formal argument in the

REPORT prototype and for any additional local variables that can be referenced

only from within the REPORT program block.

Parameter conversion: All parameters declared in the DEFINE section are

converted to the XML design document as report fields, and then are declared as

variables in the EGL report handler. In addition, parameters are converted to part

4-16 IBM Informix 4GL to EGL Conversion Utility User’s Guide

of the report driver functions as columns of the temporary table, so that their value

at every iteration of an OUTPUT TO report call can be stored in the temporary

table. The values stored in the temporary table are used as the data source for the

report.

During conversion, the I4GL record type parameters are flattened to a single level

in JasperReports fields. The following example is original I4GL code:

Define rec Record

 i, j Integer,

 k, l Integer,

 si Smallint,

End Record

This example is the equivalent code, flattened, in the XML design document:

rec_i

rec_j

rec_k

rec_l

rec_si

The Conversion Utility does not attempt to verify that the name of an I4GL record

parameter is unique, that is, that another flattened or declared JasperReports field

or variable does not have the same name. If, after conversion, you identify that

two flattened or declared JasperReports fields or variables have the same name,

you must change one of the names to ensure that each name is unique.

When converted to the EGL report handler, I4GL Report DEFINE section

parameters are declared as normal variables. The EGL report handler uses the

internal function init to process any business logic to initialize the locale variables

with the report field values. Although in I4GL it was possible to assign values to

the report fields or parameters received, it is not possible in EGL. Inconsistent

expressions can result in a report with incorrect results. To achieve your preferred

report results, you must manually modify your converted code.

The Conversion Utility converts I4GL variables to EGL Report Handler variables

and columns on the temporary table. The Conversion Utility reviews each variable

used by report statements and expressions, and treats global and non-array

variables the same as report parameters. The Conversion Utility attempts to

preserve the value of each variable at every iteration so that when EGL processes

the datasource generated from the temporary table, the values received are the

same as the I4GL values received. However, this method of passing values does

not always conform to I4GL program logic and can produce incorrect results. To

achieve your preferred report results, you must manually modify your converted

code.

Note: With one exception, a global array variable used by an I4GL report remains

global in nature. If your I4GL code has a global array variable with a value

that changes with the iteration of the OUTPUT TO Report statement, the

variable is not considered a global variable and it is not converted. To

achieve your preferred report results, you must manually modify your

converted code.

Local Variables Conversion: All DEFINE section local variables are converted to

EGL report handler variables.

Chapter 4. Post-Conversion Tasks 4-17

I4GL OUTPUT Section

In I4GL, the OUTPUT section specifies the destination and dimensions for output

from the report and the page-eject sequence from the printer.

The original I4GL OUTPUT section clauses and how they convert to the XML

design document are identified in Table 4-5 below.

 Table 4-5. I4GL Output clause conversion

I4GL OUTPUT clause Converts to Conversion specifics

PAGE LENGTH XML Design

document

v If the PAGE LENGTH clause is present during conversion, the XML

design document pageHeight page attribute is set to:

pageHeight = (Font height for the locale) *

(value of PAGE LENGTH clause)

v If the PAGE LENGTH clause is not present during conversion, the

value of PAGE LENGTH clause defaults to 66, the I4GL default

page size.

v Before setting the pageHeight value, the Conversion Utility verifies

that the sum of the height of all the bands and topMargin and

bottomMargin fit within the pageHeight value. As necessary, the

Conversion Utility adjusts the pageHeight to ensure the correct fit.

BOTTOM MARGIN XML Design

document

v If the BOTTOM MARGIN clause is present during conversion, the

XML design document bottomMargin page attribute is set to:

bottomMargin = (Font height for the locale) *

(value of BOTTOM MARGIN)

v If the BOTTOM MARGIN clause is not present during conversion,

the bottomMargin page attribute is set to:

bottomMargin = (Font height for the locale) *

3 (default I4GL value for BOTTOM MARGIN)

LEFT MARGIN XML Design

document

v If the LEFT MARGIN clause is present during conversion, the

JasperReports XML design leftMargin page attribute is set to:

leftMargin = (Font width for the locale) *

(value of LEFT MARGIN)

v If the LEFT MARGIN clause is not present during conversion, the

leftMargin page attribute is set to:

leftMargin = (Font width for the locale) *

5 (default I4GL value for LEFT MARGIN)

RIGHT MARGIN XML Design

document

v If the RIGHT MARGIN clause is present during conversion, the

XML design document pageWidth attribute is set to:

pageWidth = (Font width for the locale) *

(value of right margin)

v If the RIGHT MARGIN clause is not present during conversion, the

pageWidth attribute is set to:

pageWidth = (Font width for the locale) *

132 (default I4GL value for RIGHT MARGIN)

4-18 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table 4-5. I4GL Output clause conversion (continued)

I4GL OUTPUT clause Converts to Conversion specifics

TOP MARGIN XML Design

document

v If the TOP MARGIN clause is present during conversion, the XML

design document topMargin attribute is set to:

topMargin = (Font height for the locale) *

(value of TOP MARGIN)

v If the TOP MARGIN clause is not present during conversion, the

topMargin attribute is set to:

topMargin = (Font height for the locale) *

3 (default I4GL value for TOP MARGIN)

REPORT TO Does not convert

directly

v If REPORT TO FILE filename or REPORT TO filename clauses are

present in the I4GL report, the Conversion Utility saves the

exported text output with the given filename.

TOP OF PAGE Does not convert

directly

In EGL, the character used by the EGL report text exporter.

I4GL ORDER BY Section

In I4GL, the ORDER BY section specifies a sort list for the input records and

identifies the order in which groups are evaluated. The ORDER BY section

converts to an XML design document (with the extension .jrxml) and to EGL

Report driver functions.

Conversion of the ORDER BY to EGL provides:

v In the XML design document, group sections that follow the order established in

the I4GL ORDER BY section.

v If ORDER EXTERNAL BY is not used in the I4GL Report, the temporary table

maintains the order of ascending or descending columns as given, and records

are retrieved from the table in that sorted order.

I4GL FORMAT Section

I4GL supports two types of FORMAT sections, both of which determine the

appearance of the output from the report looks. The simplest report contains only

the EVERY ROW keywords between the FORMAT and END REPORT keywords. A

more complex I4GL report has FORMAT sections that contain control blocks (such

as ON EVERY ROW or BEFORE GROUP OF) which contain statements to execute

while the report is being processed. This section discusses both simple and

complex I4GL reports and how their components convert to EGL and

JasperReports.

Simple Reports: In I4GL, the FORMAT EVERY ROW statement produces a

default report for all of the data passed to the I4GL Report function. No other

format block statements are allowed with this statement.

In converting an I4GL simple report to the EGL equivalent, the Conversion Utility

calculates the size of the report fields against the size of the field names, and uses

whichever size is greater. If the size is less than the columnWidth attribute of the

tag in the XML design document, the Conversion Utility converts the following to

the XML design document:

v one page header section

v one detail section

Chapter 4. Post-Conversion Tasks 4-19

In the page header section, a field name is placed one after the other using the size

that is greater, field name or the field on the page header and the detail section.

If the size is greater than the columnWidth attribute in the XML design document,

the Conversion Utility produces one detail section in the XML design document.

The detail section shows report fields, and each field name is followed by the data

in the field. The page size of a generated report is adjusted to fit the detail section.

I4GL simple report data values are converted to one of the following three EGL

Report Handler function string values:

v beforeDetailEvals. This JasperReports default method is called before processing

any detail band elements.

v init. This method copies all report field values to local variables.

v getPrintString. This method is used by the XML design document to retrieve

report field values out of the print string array.

Complex Reports: In I4GL, control blocks define the structure of a report by

specifying one or more statements to be executed when specific parts of the report

are processed. If no data records are sent as output to the report, none of the

statements in these blocks are executed. Essentially, I4GL complex reports have

multiple subsections within the FORMAT section.

Although an I4GL report contains business and presentation logic in one central

location, business and presentation logic are separate in EGL reports. The

Conversion Utility converts I4GL business logic into an EGL report handler

document and converts the I4GL presentation logic into an XML design document.

All of the I4GL FORMAT subsection data presentation statements are converted or

moved to a corresponding JasperReports band, a generic report section. The

mapping between the original I4GL FORMAT subsection data presentation

statement and the converted band is provided in Table 4-6 below.

 Table 4-6. Mapping of I4GL Data Presentation statements to JasperReports bands

Data presentation statement Band

First Page Header title

Page Header pageHeader

Before Group Of variable groupHeader (of a group section for the given variable)

On Every Row detail

After Group Of variable groupFooter (of a group section for the given variable)

Page Trailer pageFooter

On Last Row summary

The mapping between the original I4GL FORMAT subsection data and the EGL

Report Handler method is provided in Table 4-7 below.

Note: The JasperReports Method column heading identifies if a method is also a

default report event handling method.

 Table 4-7. Mapping of I4GL FORMAT subsections to EGL and JasperReports

I4GL Report FORMAT

sub-section

EGL Report Handler

Method JasperReports Method

First Page Header firstPageHeader No

4-20 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table 4-7. Mapping of I4GL FORMAT subsections to EGL and JasperReports (continued)

I4GL Report FORMAT

sub-section

EGL Report Handler

Method JasperReports Method

Page Header pageHeader No

Before Group Of variable beforeGroupOf variable No

On Every Row beforeDetailEval Yes

After Group Of variable afterGroupOf No

Page Trailer pageTrailer No

On Last Row onLastRow No

In addition to the methods listed in the table above, three additional methods are

defined in the EGL Report Handler:

v init. This Report Handler method is called from other methods to initialize the

local report handler variables with report field values. In addition, this method

initializes print flags and print strings associated with the designated band.

v getPrintString. This method is called from the XML design document to return

values to be displayed in the text field.

v getPrintFlag. This method is called from the XML design document to determine

the print status of a static text or text field. This method returns the values of 1

(true) or 0 (false).

The following I4GL Report statements do not convert to EGL or JasperReports;

however, to maintain syntactically correct code, the Conversion Utility generates

redundant code in the report handler for these statements:

v EXIT REPORT

v NEED

v PAUSE

The following I4GL elements convert to EGL on a conditional basis:

v SKIP TO TOP OF PAGE. This statement converts only if it occurs within the

FORMAT section of a BEFORE GROUP OF sub-section. If SKIP TO TOP OF

PAGE occurs in any other instance, the statement will not convert, and as a

consequence, your report may produce data on an incorrect page.

v LINENO. EGL does not support conversion of the I4GL LINENO operator.

However, the Conversion Utility does generate EGL report handler code which

simulates the LINENO operation by incrementing the local report handler

variable for every print statement executed through the business logic.

Note: If your converted report contains the elements listed above, you should

review your converted code and correct it as necessary.

I4GL PRINT Statement: In I4GL, the PRINT statement produces output from a

report definition. The Conversion Utility analyzes and collects data from all I4GL

report PRINT statements and converts most of the report presentation layout to the

XML design document. The Conversion Utility analyzes and collects the following

PRINT statement data:

1. The number of PRINT statements in a report.

2. The number of looping constructs containing PRINT statements, and the

number of PRINT statements in each looping construct.

Chapter 4. Post-Conversion Tasks 4-21

3. The number of expressions in a PRINT statement and the attributes of each

expression.

4. The size of each PRINT statement. Size is calculated by adding the size of all

data returned by the PRINT statement expressions. If the size of the PRINT

statement is larger than the columnWidth, the pageWidth and columnWidth

are adjusted to fit all the print fields in the page.

Once the information above is collected, the Conversion Utility defines the

following for the EGL Report Handler or the XML design document:

1. The design band height for every I4GL FORMAT sub-section.

2. The number of EGL sub-reports required, and the structure of the static text

and text fields for each subreport.

3. The number of record arrays, and the structure necessary to hold subreport

data in the EGL Report Handler.

4. The number of print flags and print strings required in the EGL Report

Handler.

5. The number of text elements and whether they fit into a static text or a text

field.

6. Whether the given text field is right justified, and therefore, a numeric, field, or

left justified, and therefore, a non-numeric, field.

For every PRINT statement that does not occur in a loop, the Conversion Utility:

1. Adjusts the coordinates for the static text or the text field .xml tags and

generates the correct coordinates in the XML design document.

2. Associates one array index in egl4gl_printFlag with the given PRINT

statement.

3. Generates code in the XML design document to get the associated

egl4gl_printFlag value returned from EGL report handler program for the

printWhenExpression tag of every static text or text field in the XML design

document to determine if that element should appear in the report.

4. Generates the EGL report handler code that sets the appropriate value for

associated egl4gl_printflag.

5. Associates one array index in egl4gl_printString with every expression in the

PRINT statement.

6. Adds code to the text fields in the XML design document to return string

values to be placed in the report from EGL report handler for a given array

index of egl4gl_printString.

7. Generates code in the EGL report handler to populate the egl4gl_printString

array indexes with output string values taking into account PRINT attributes.

8. Increments the egl4gl_lineNumber variable by one; this increment parallels the

I4GL LINENO operator.

I4GL PRINT Statement Expressions: I4GL PRINT statement expressions return

one or more values that can be displayed as printable characters. The Conversion

Utility analyzes each expression and converts it into either a staticText field or into

one or more text fields in the XML design document. In addition, these print

expressions are used to determine the vertical placement and the size or width of

staticText or text fields in the XML design document. The width is determined by

the following parameters:

v The attribute of the print expression.

v The data size of the variable making the PRINT expression.

4-22 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Note: When the I4GL SPACE or SPACES AND COLUMN operator have an integer

expression instead of an integer literal, the Conversion Utility sets the value

of the expression to 1, the default. You might need to adjust the report

design and code to achieve the correct report layout.

I4GL PRINT Statement in looping constructs: Like other PRINT statements,

PRINT statements in looping constructs are converted to the equivalent number of

print expressions, each of which is added to the XML design document subreport.

In the EGL Report Handler, one record array is declared to accumulate all of the

data generated for output. For every PRINT statement with a looping construct,

the Conversion Utility:

1. Identifies all PRINT statement expressions.

2. Identifies the nesting structure of the loop.

3. Declares a record array structure which matches the nesting structure, print

strings, and the print flags for the PRINT statement.

4. Adds code in the EGL report handler to declare a record array, and populates

the record array fields with print string and print flag data.

5. Adds a subreport tag in the XML design document.

6. Generates another XML design document with one detail section containing all

of the fields from the record array. This detail section represents the template of

the PRINT statement as identified in the looping structure.

Note: The Conversion Utility attempts to convert the I4GL LABEL and GOTO

looping structure statements into a looping structure. However,

identification and conversion of the LABEL and GOTO looping structures is

not always successful, and you might need to adjust the report design and

code to achieve the correct results.

I4GL PRINT statement terminating with a semicolon: An I4GL PRINT statement

terminating with a semicolon indicates that the next PRINT statement continues on

the same line. The Conversion Utility identifies each PRINT statement terminating

with a semi-colon and creates an XML design document with a similar layout.

However, PRINT statements terminating with a semicolon are not successful when

the following conditions occur:

1. An IF condition block is implemented before the next PRINT statement.

2. The PRINT statement is followed by a looping construct.

3. The PRINT statement is the last PRINT statement on the I4GL FORMAT

section.

I4GL Report Operators: Details about the conversion of I4GL report operators is

provided in Table 4-8 below.

 Table 4-8. Conversion of I4GL Report Operators

I4GL Report Operator Conversion specifics

CLIPPED If a PRINT statement expression is followed by a PRINT statement expression with an

attribute of CLIPPED, in the XML design document, the second PRINT statement is

placed in the same text field as the first statement. If the Conversion Utility identifies a

COLUMN print expression or an end of print statement, the placement of two print

expressions into one text field terminates. The size of the text field into which the

PRINT statement is placed is the sum of all PRINT fields placed in the text field.

WORDWRAP To convert WORDWRAP, the Conversion Utility sets the XML design document

textField tag isStretchWithOverflow attribute to true.

Chapter 4. Post-Conversion Tasks 4-23

Table 4-8. Conversion of I4GL Report Operators (continued)

I4GL Report Operator Conversion specifics

USING When creating the output egl4gl_printString in the EGL report handler program, the

EGL formatting functions are called to the return string, which is formatted similarly to

the I4GL USING attribute.

SPACE or SPACES The Conversion Utility analyzes the SPACE or SPACES operators as quoted blank

strings, and converts the operators into a staticText field or a textField in the Jasper

XML design document. If the number of SPACES is defined by a non-integer literal,

the Conversion Utility assumes a SPACE of 1.

PAGENO The Conversion Utility converts the PAGENO operator to the JasperReport

PAGE_NUMBER variable. The EGL Report Handler maintains the methods to access

the PAGE_NUMBER variable.

LINENO There is no direct conversion mapping for the I4GL LINENO operator. Instead,

converted I4GL reports use a user-defined variable egl4gl_lineNumber to simulate

LINENO.

Note: Because of the inability to maintain the correct value for LINENO, you might

need to adjust the report code to achieve the expected report outcome.

FILE This operator does not convert to EGL. To achieve the results generated by FILE, you

must manually correct your converted code.

I4GL Aggregate Report Functions: In I4GL, the SUM, MAX, MIN, COUNT,

PERCENT, and AVG aggregate report functions were used to summarize data

from several records in a report. During the conversion of your I4GL report, each

usage of an aggregate report function is converted to one or more XML design

report variables and to one or more report handler functions. To ensure that the

calculation can be handled in the report handler function, the XML design report

variable calculation type is set to SYSTEM.

This section provides information on how each I4GL aggregate report function

converts to EGL. For all of the examples below, in the I4GL statements provided,

variable is a valid I4GL report identifier.

SUM: The I4GL SUM aggregate function generates one JasperReports XML

design variable and one report handler function. For example, the single I4GL

statement

PRINT SUM(variable)

converts to the following two elements in EGL:

1. the JasperReports XML design variable

variable_SUM_number

2. the EGL report handler function, which calculates the JasperReports XML

design variable

Function update variable_SUM_number

In the EGL Report handler function above, number is a running number which

distinguishes each occurrence of the I4GL SUM aggregate function, and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call a report design variable using the

getReportVariableValue() report library API. Therefore, the PRINT SUM(variable)

statement above appears in EGL as:

4-24 IBM Informix 4GL to EGL Conversion Utility User’s Guide

egl4gl_printString[1] = getReportVariableValue(“<variable>_SUM_<number>”);

MAX: The I4GL MAX aggregate function generates one XML design variable and

one report handler function. For example, the single I4GL statement

PRINT MAX(variable)

converts to the following two elements in EGL:

1. the XML design variable

variable_MAX_number

2. the EGL report handler function, which identifies the maximum value of the

variable

Function update variable_MAX_number

In the EGL report handler function above, number is a running number that

distinguishes each occurrence the I4GL MAX aggregate function and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call a XML design report variable using

the getReportVariableValue() report library API. Therefore, the I4GL PRINT

MAX(variable) statement above appears in EGL as:

egl4gl_printString[1] = getReportVariableValue(“variable_MAX_number”);

MIN: The I4GL MIN aggregate function generates one XML design variable and

one report handler function. For example, the single I4GL statement

PRINT MIN(variable)

converts to the following two elements in EGL:

1. the JasperReports XML design variable

v variable_MIN_number

2. the EGL report handler function, which identifies the minimum value of the

JasperReports variable

v Function update variable_MIN_number

In the EGL report handler function above, number is a running number that

distinguishes each occurrence the I4GL MIN aggregate function, and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call a JasperReports XML design report

variable using the getReportVariableValue() report library API. Therefore, the I4GL

PRINT MIN(variable) statement above appears in EGL as:

egl4gl_printString[1] = getReportVariableValue(“variable_MIN_number”);

COUNT: The I4GL COUNT aggregate function generates one JasperReports XML

design variable and one report handler function. For example, the single I4GL

statement

PRINT COUNT(*)

converts to the following two elements in EGL:

1. the JasperReports XML design variable

Chapter 4. Post-Conversion Tasks 4-25

v COUNT_number

2. the EGL report handler function, which identifies the maximum value of the

JasperReports variable

v Function update variable_COUNT_number

In the EGL report handler function above, number is a running number which

distinguishes each occurrence the I4GL COUNT aggregate function, and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using

the getReportVariableValue() report library API. Therefore, the I4GL PRINT

COUNT(*) statement above, appears in EGL as:

egl4gl_printString[1] = getReportVariableValue(“variable_COUNT_number”);

PERCENT: The I4GL PERCENT aggregate function generates two JasperReports

XML design variables and two report handler functions. For example, the single

I4GL statement

PRINT PERCENT(variable)

converts to the following four elements in EGL:

1. two JasperReports XML design variables

v variable_PERCENT_number_PART

v variable_PERCENT_number_WHOLE

2. two EGL report handler functions, each of which identify the maximum value

of the JasperReports variable
v Function update variable_PERCENT_number_PART

v Function update variable_PERCENT_number_WHOLE

For both XML design variables and the EGL report handler functions, the

following applies:

v In Function update variable_PERCENT_number_PART

– variable accumulates the value of all of the variables for which the conditional

clause is satisfied.
v In Function update variable_PERCENT_number_WHOLE

– variable accumulates the value of all the variables in the record set.

For both EGL report handler functions above, number is a running number which

distinguishes each occurrence of the I4GL PERCENT aggregate function, and is

used to create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using

the getReportVariableValue() report library API. Therefore, the I4GL PRINT

PERCENT(variable) statement above appears in EGL as:

egl4gl_printString[1] =

getReportVariableValue(“variable_PERCENT_number_PART”) /

getReportVariableValue(“variable_PERCENT_number_WHOLE”) * 100;

AVG: The I4GL AVG aggregate function generates two JasperReports XML design

variables and two report handler functions. For example, the single I4GL statement

4-26 IBM Informix 4GL to EGL Conversion Utility User’s Guide

PRINT AVG(variable)

converts to the following four elements in EGL:

1. two JasperReports XML design variables

v variable_AVG_number_SUM

v variable_AVG_number_COUNT

2. two EGL report handler functions, each of which identify the maximum value

of the JasperReports variable
v Function update variable_AVG_number_SUM

v Function update variable_AVG_number_COUNT

For both JasperReports XML design variables and the EGL report handler

functions, the following applies:

v In Function update variable_AVG_number_SUM

– variable accumulates the value of all of the variables for which the conditional

clause is satisfied.
v In Function update variable_AVG_number_COUNT

– variable accumulates the value of all the variables in the record set.

For both EGL report handler functions above, number is a running number which

distinguishes each occurrence of the I4GL AVG aggregate function, and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using

the getReportVariableValue() report library API. Therefore, the I4GL PRINT

AVG(variable) statement above appears in EGL as:

egl4gl_printString[1] =

getReportVariableValue(“variable_AVG_number_SUM”) /

getReportVariableValue(“variable_AVG_number_COUNT”);

For information on how to implement your EGL reports or how to create new

reports, see the EGL Reports topics in the information center.

Understanding your EGL Projects, Packages and Files

An EGL project contains zero to many source folders, each of which contains zero

to many packages, each of which contains zero to many files. Each file contains

zero to many parts.

Note: The following information is also presented in your Rational product

information center, and provides cross-references to other information center

topics.

EGL Project

An EGL project is characterized by a set of properties. In the context of an EGL

project, EGL automatically performs validation and resolves part references when

you perform certain tasks; for example, when you save an EGL file or build file. In

addition, if you are working with page handler parts, EGL automatically generates

output only if:

Chapter 4. Post-Conversion Tasks 4-27

v You set the automatic build process after selecting these options: Window >

Preferences > Workbench > Perform build automatically on resource

modification.

v You established a default build descriptor as a preference or property

An EGL project is formed by selecting EGL or EGL Web as the project type when

you create a new project. You assign properties while working through the steps of

project creation. To begin modifying your choices after you have completed those

steps, right-click the project name and when a context menu is displayed, click

Properties.

The EGL properties are described in the following sections.

EGL source folder

One or more project folders that are the roots for the project’s packages, each of

which is a set of subdirectories. A source folder is useful for keeping EGL source

separate from Java files and for keeping EGL source files out of the Web

deployment directories. You should specify EGL source folders in all cases; but if a

source folder is not specified, the only source folder is the project directory.

The value of this property is stored in a file named .eglpath in the project directory

and is saved in the repository (if any) that you use to store EGL files.

The EGL project wizards each create one source folder named EGLSource.

EGL build path

The list of projects that are searched for any part that is not found in the current

project.

The value of this property is stored in a file named .eglpath in the project directory

and is saved in the repository (if any) that you use to store EGL files.

In the following example of an .eglpath file, EGLSource is a source folder in the

current project, and AnotherProject is a project in the EGL path:

<?xml version="1.0" encoding="UTF-8"?>

 <eglpath>

 <eglpathentry kind="src" path="EGLSource"/>

 <eglpathentry kind="src" path="\AnotherProject"/>

 </eglpath>

The source folders for AnotherProject are determined from the .eglpath file in that

project.

Default build descriptors

The build descriptors that allow you to generate output quickly, as described in

Generation in the workbench information center topic.

Package

A package is a named collection of related source parts.

They are not in use when you create build parts.

By convention, you achieve uniqueness in package names by making the initial

part of the package name an inversion of your organization’s Internet domain

name. For example, the IBM Corporation domain name is ibm.com, and the EGL

packages begin with ″com.ibm″. By using this convention, you gain some

4-28 IBM Informix 4GL to EGL Conversion Utility User’s Guide

assurance that the names of Web programs developed by your organization will

not duplicate the names of programs developed by another organization and can

be installed on the same server without possibility of a name collision.

The folders of a given package are identified by the package name, which is a

sequence of identifiers separated by periods (.), as in this example:

com.mycom.mypack

Each identifier corresponds to a subfolder under an EGL source folder. The

directory structure for com.mycom.mypack, for example, is \com\mycom\mypack,

and the source files are stored in the bottom-most folder; in this case, in mypack. If

the workspace is c:\myWorkspace, if the project is new.project, and if the source

folder is EGLSource, the path for that package is as follows:

c:\myWorkspace\new.project\EGLSource\com\mycom\mypack

The parts in an EGL file all belong to the same package. The file’s package

statement, if any, specifies the name of that package. If you do not specify a

package statement, the parts are stored directly in the source folder and are said to

be in the default package. You should always specify a package statement because

files in the default package cannot be shared by parts in other packages or projects.

Two parts with the same identifier may not be defined in the same package.

Note: You should not use the same package name under different projects or

different folders.

The package for generated Java output is the same as the EGL file package in most

cases.

EGL Files

Each EGL file belongs to one of these categories:

Source file

An EGL source file (extension .egl) contains logic, data, and user interface parts

and is written in EGL source format. Each of the following generatable parts can be

transformed into a compilable unit:

v DataTable

v FormGroup

v Handler (the basis of a report handler)

v Library

v PageHandler

v Program

Other parts are called subparts.

An EGL source file can include zero to many subparts but can include no more

than one generatable part. The generatable part (if any) must be at the top level of

the file and must have the same name as the file.

Build File

An EGL build file (extension .eglbld) contains any number of build parts and is

written in Extensible Markup Language (XML), in EGL build-file format. You can

review the related DTD, which is in the following directory:

installationDir\egl\eclipse\plugins\com.ibm.etools.egl_version

Chapter 4. Post-Conversion Tasks 4-29

Recommendations

This section gives recommendations for setting up your development projects.

For build descriptors

Project teams should appoint one person as a build-descriptor developer. The tasks

for that person are as follows:

v Create the build descriptors for the source-code developers

v Put those build descriptors in a project separate from the source code projects;

and make that separate project available in the repository or by some other

means

v Ask the source-code developers to set the property default build descriptors in

their projects, so that the property references the appropriate build descriptors

v If a small subset of the build descriptor options (such as for user ID and

password) varies from one source-code developer to the next, ask each

source-code developer to do as follows:

– Code a personal build descriptor that uses the option nextBuildDescriptor to

point to a group build descriptor

– Ask the source-code developers to set the property default build descriptors

in their files, folders, or packages, so that the property references the personal

build descriptor. They do not specify the property at the project level because

the project-level property is under repository control, along with other project

information.

For additional information, see Build descriptor part.

For packages

For packages, recommendations are as follows:

v Do not use the same package name in different projects or source directories

v Do not use the default package

Part assignment

For parts, many of the recommendations refer to good practices, not hard

requirements. Fulfill even the optional recommendations unless you have good

reason to do otherwise:

v A requirement is that you put JSPs in the same project as their associated page

handlers.

v If a subpart (like a record part) is used only by one program, library, or page

handler, place the subpart in the same file as the part.

v If a part is referenced from different files in the same package, put that part in a

separate file in the package.

v If a part is shared across packages in a single project, place that part in a

separate package in that project.

v Put code for completely unrelated applications in different projects. The project

is the unit for transferring code between your local directory structure and the

repository. Design project structure so that developers can minimize the amount

of code they must have loaded into their development system.

v Name projects, packages, and files in a way that reflects the use of the parts they

contain.

v If your process emphasizes code ownership by a developer, do not assign parts

for different owners to the same file.

4-30 IBM Informix 4GL to EGL Conversion Utility User’s Guide

v Assign parts to packages with a clear understanding of the purpose of the

package; and group those parts by the closeness of the relationship between

them. The following distinction is important:

– Moving a part from file to file in the same package does not require that you

change import statements in other files.

– Moving a part from one package to another might require an import

statement to be added or changed in every file that references the moved

part.

The Information Center Help System and EGL Tutorial

The information center contains extensive documentation on how to use both EGL

and the full range of product features. Access the information center from the main

menu by selecting Help > Rational Help.

The EGL Tutorial teaches you how to build a simple dynamic Web site using EGL.

The tutorial is accessible from the main menu by selecting Help > Tutorials

Gallery and then selecting Do and Learn from the left pane of the gallery. The

tutorial assists you in learning how to:

v Set up and configure an EGL project

v Create EGL source code

v Create two simple Web pages that access data in a relational database

v Pass a parameter from one Web page to another

v Configure a Web application server and run an application on that server

Exercises in the tutorial include:

v Setting up EGL

v Creating and configuring the EGL project

v Starting and configuring WebSphere Application Server v6.0

v Creating EGL data parts

v Creating an EGL library

v Creating a Web page

v Adding data to the page

v Linking to another page

v Creating an update page

Chapter 4. Post-Conversion Tasks 4-31

4-32 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 5. Reconversion Process and Tasks

In This Chapter . 5-1

When to Reconvert Your I4GL Shared Libraries . 5-1

How to Reconvert Your I4GL Shared Libraries . 5-1

Conversion Wizard Reconversion . 5-2

Command Line Reconversion . 5-2

Reasons and Workarounds for Unsuccessful Reconversions 5-2

In This Chapter

This chapter describes when and how to reconvert your I4GL shared libraries.

When to Reconvert Your I4GL Shared Libraries

During the conversion of your I4GL shared libraries, a library-specific manifest file

is generated in the following directory:

EGLDestinationDirectory/ConversionArtifacts/manifest. This manifest file has the

following naming convention: ProjectnameProjecttypeManifest.xml. For example,

for a Shared Library project named MyLibrary, the manifest file is named

MyLibraryLibraryManifest.xml. The manifest file identifies the functions, global

variables, and forms used in each library.

During an I4GL application conversion, the Conversion Utility compares the

function call references in the source files with the manifest file from the

dependent shared libraries. If the function call references in the source files and the

function references in the dependent manifest file are not consistent, both must be

reconciled. The dependent manifest file must be updated with the correct function

call references, and the shared library project must be reconverted using the

updated manifest file.

How to Reconvert Your I4GL Shared Libraries

During an I4GL application conversion, the Conversion Utility reconciles the

dependent shared library manifest file. This manifest file should be used for the

dependent shared library reconversion.

When Conversion Utility writes this reconciled manifest file, it backs up the

original dependent manifest file with the filename of filename.bak.num, and

replaces the given manifest file with the reconciled manifest file. You must ensure

that the correct manifest file is used for the dependent shared library reconversion.

You can reconvert your shared libraries in two modes:

v Through the conversion wizard

v Using the command line

Note: Since using the command line mode for the initial conversion process

requires users to manually create a configuration file, you might find it

easier to use the command line option only for reconversion, when an

existing configuration file can be used.

© Copyright IBM Corp. 2005 5-1

Conversion Wizard Reconversion

To reconvert your shared library:

1. From within the EGL Perspective in your Rational product, select File > New >

Other > Informix 4GL to EGL Conversion > Shared Library Conversion

Wizard.

2. In the I4GL Shared Library Conversion Project screen, insert the following

information:

v Project Details.

– Reconversion Project. Select this option and provide the location of the

existing configuration file and the reconciled manifest file. You can browse

to locate the file.
v Conversion Artifacts. The Conversion Utility generates a number of artifacts

related to the conversion, including configuration, manifest and conversion

log files. By default, the conversion artifacts are located in the EGL

destination directory. You can also designate to create the conversion artifacts

in an external directory. You can browse to an appropriate directory, but

cannot create a new directory at this time.
3. Conversion Project Details. Review the project details, including the contents

of the configuration file and manifest file.

4. Click Finish to launch the reconversion.

Command Line Reconversion

You can reconvert your shared library from the command line.

To use the command line to reconvert a shared library:

1. Open a command line

2. At the prompt, enter the following, where configurationfile is the name of the

configuration file used for the earlier conversion and manifestfile is the name of

the updated manifest file created by the Conversion Utility:

a. For Windows:

e4gl.bat configurationfile -reconversion manifestfile

b. For Linux:

e4gl.sh configurationfile -reconversion manifestfile

Note: For information on how to use the command line utility to convert an I4GL

application, see “Conversion Utility Command Line Mode” on page 3-7.

Reasons and Workarounds for Unsuccessful Reconversions

The shared library reconversion may fail for the reasons described in Table 5-1

below.

 Table 5-1. Reasons for Shared Library Reconversion Failure

Reason for Reconversion

Failure Workaround

Configuration file corruption Edit and correct the configuration file manually, or use

the Conversion Utility Wizard to regenerate a new,

uncorrupted configuration file.

5-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table 5-1. Reasons for Shared Library Reconversion Failure (continued)

Reason for Reconversion

Failure Workaround

Manifest file corruption Use the Conversion Utility Wizard to convert the shared

library as a New Project and produce a new manifest

file. Use the new manifest file to convert the application

project, and then use the Application project reconciled

manifest file to reconvert the shared library.

Inadequate disk space Create enough disk space.

Absence of file system write

permissions

Obtain write permissions for the file system.

Inability to read the listed I4GL

source files

Verify the name and path of each source file.

Chapter 5. Reconversion Process and Tasks 5-3

5-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix A. I4GL to EGL Syntax Mapping

In This Appendix

This appendix identifes the correspondence between I4GL and EGL syntax

constructs, and includes the following tables:

v “Data Types,” below

v “Special Data Casting” on page A-3

v “Definition and Declaration Statements” on page A-3

v “Storage Manipulation Statements” on page A-5

v “Program Flow Control Statements” on page A-5

v “Compiler Directives” on page A-7

v “I4GL Forms to EGL Console User Interface” on page A-8

v “4GL Report Execution Statements” on page A-11

v “Built-in 4GL Functions, Variables, and Constants” on page A-11

v “Built-in and External SQL Functions and Procedures” on page A-13

v “Operators” on page A-13

– “Keyword-Based Operators” on page A-13

– “Operators Represented by Non-Alphabetic Symbols” on page A-14
v “SQL Cursor Manipulation Statements” on page A-15

v “SQL Data Definition Statements” on page A-16

v “SQL Data Manipulation Statements” on page A-16

v “SQL Dynamic Management Statements” on page A-17

v “SQL Query Optimization Statements” on page A-17

v “SQL Data Access Statements” on page A-17

v “SQL Data Integrity Statements” on page A-18

v “SQL Stored Procedure Statements” on page A-18

v “SQL Client/Server Connection Statements” on page A-18

v “SQL Optical Subsystems Statements” on page A-19

v “Environment Variables” on page A-19.

Data Types

All EGL primitive types are described and their behaviors explained in the

Primitive Types online help topic.

Note: RECORD definitions are appended to the end of the generated file and get

names based on the file and function containing the definition and the first

variable of that type.

© Copyright IBM Corp. 2005 A-1

Table A-1. How 4GL data types map to EGL primitive types

I4GL EGL

ARRAY OF:

DEFINE x array[10] of integer

DEFINE myrec ARRAY[10,2] of RECORD

 INT x,

 INT y

END RECORD

x int[10];

Myrec recordtype_filename_myrec[10][2];

Record recordtype_filename_myrec type SqlRecord

 x Int;

 y Int;

 End

BYTE BLOB

BIGINT BIGINT

CHAR (size)

CHAR

UNICODE (SIZE)

UNICODE (1)

CHARACTER UNICODE (1)

DATE DATE

DATETIME YEAR TO FRACTION(3)

DATETIME YEAR TO HOUR

Timestamp (″yyyyMMddhhmmssfff″);

Timestamp (″yyyyMMddhh″);

DEC DECIMAL

DECIMAL(p, s) DECIMAL(p, s)

DECIMAL(p)

NUMERIC(p)

DECIMAL(p) for ANSI database

DOUBLE for non-ANSI database

FLOAT for non-ANSI database

v ANSI database determined from value found in the Database

Schema Manifest File.

DOUBLE PRECISION FLOAT

DYNAMIC ARRAY

DEFINE myA DYNAMIC ARRAY

WITH 3 DIMENSIONS of xxxx

myA xxx[][][];

FLOAT FLOAT

INT

INTEGER

INT

INT

INT8 BIGINT

INTERVAL YEAR(9) TO MONTH

INTERVAL DAY(7) TO FRACTION(3)

Interval(″yyyyyyyyyMM″ /* YEAR(9) TO MONTH */)

Interval(″dddddddhhmmssfff″)

MONEY MONEY

NCHAR(size) UNICODE(size)

NVARCHAR(size) String

Note: The maximum size of the VARCHAR variable is not

represented in EGL.

REAL SMALLFLOAT

A-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-1. How 4GL data types map to EGL primitive types (continued)

I4GL EGL

RECORD

DEFINE Var LIKE table.code;

DEFINE Recvar LIKE table.*;

/* RECORD is defined by the EGL file during the database

schema extraction project. */

Package IfmxDatabaseSchema.Svrname.Dbname;

Dataitem like_tabname_code UNICODE(10)

{ ... properties ... };

Dataitem like_tabname_quantity INT { ... properties ... };

Record rec_like_tabname type SQLRecord

{ tablenames=[″table″]}

code like_tabname_code { column=″code″}

quantity like_tabname_quantity { columnname=″code″}

end

Import IfmxDatabaseSchema.Svrname.Dbname.*;

Var like_table_code;

Recvar rec_like_table;

SMALLFLOAT SMALLFLOAT

SMALLINT SMALLINT

TEXT CLOB

VARCHAR(size) String

Note: The maximum size of the VARCHAR variable is not

represented in EGL.

Special Data Casting

 Table A-2. Special Data Casting

I4GL EGL

DEFINE i INTEGER, d DATE;

LET i = d;

LET d = I;

i = DateToDays(d);

d = DaysToDate(i);

DEFINE c CHAR(80), d DATE;

LET c = d;

C = d;

/* system creates formatted string for d based on locale */

DEFINE ds DATETIME YEAR TO SEC;

DISPLAY ″now is″, ds;

displayLineMode (″now is ″+ds);

/* system creates formatted string for ds based on locale */

DEFINE inv INTERVAL DAY TO SEC;

DISPLAY ″remaining time is″, inv;

displayLineMode (″remaining time is ″+inv);

/* system creates formatted string for inv based on locale */

Definition and Declaration Statements

 Table A-3. How 4GL Definition and Declaration Statements map to EGL

I4GL EGL

DEFINE x INTEGER x int

Appendix A. I4GL to EGL Syntax Mapping A-3

Table A-3. How 4GL Definition and Declaration Statements map to EGL (continued)

I4GL EGL

FUNCTION fn1(a,b)

DEFINE a INTEGER

DEFINE b INTEGER

DEFINE c INTEGER

// ...

RETURN c

END FUNCTION

function fn1 (a INT in, b INT in)

 returning (INT)

 c int;

 // ...

 return (c);

end //function

Multiple returns:

 FUNCTION fn1(a,b)

 DEFINE a INTEGER

 DEFINE b INTEGER

 DEFINE c INTEGER

 DEFINE d INTEGER

 RETURN c,d

 END FUNCTION

function fn1 (a INT in, b INT in

$_retvar1 INT out,

$_retvar2 INT out)

c int;

d int;

$_retvar1 = c

$_retvar2 = d;

return;

end//Function

Record.*returns:

 CALL fn1() RETURNING r.*;

 ...

 FUNCTION fn1()

function fun1(/* returning */

$_retvar_1 rec_like_tab INOUT)

move func_data to $_retvar_1;

return;

end

Record.mem1 THRU Record.mem2:

 FUNCTION fn1(r.a THRU r.c)

 DEFINE r LIKE tabname.*;

 END FUNCTION

// Expand member list to individual values

 FUNCTION fun1 (a INT IN, b

 UNICODE(20) IN, c INT IN)

 ...

 ...

 END // FUNCTION

GLOBALS ... END GLOBALS

DEFINE fvar INT;

GLOBALS DEFINE gvar INT;

END GLOBALS

GLOBALS filename

Variables defined at the top of the file but not in the GLOBALS

section will be private to the file. Variables defined in the

GLOBALS section can be referenced by other files and packages.

private fvar int;

gvar int;

import packageOfFilename.*;

// library declaration

use filename;

LABEL

LABEL xxx:

xxx:

v Will be used along with GOTO statement

MAIN FUNCTION $_filename_main()

REPORT External tool

A-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Storage Manipulation Statements

 Table A-4. How 4GL Storage Manipulation Statements map to EGL

I4GL EGL

DEFINE var BLOB, var2 TEXT;

LOCATE var, var, var2 IN MEMORY

LOCATE var, var2 IN FILE

LOCATE var, var2 IN FILE ″filename″;

LOCATE var, var2 IN FILE filevar;

Var Blob; Var2 Clob;

//LOCATE var, var, var IN MEMORY;

attachBlobToTempFile(var);

attachBlobToTempFile(var2);

attachBlobToFile(var,″filename″);

attachBlobToFile(var2, ″filename″);

attachBlobToFile(var, filevar);

attachBlobToFile(var2 filevar);

FREE preparedStatement

FREE Cursor

FREE bytevar

FREE textvar

FreeSql (preparedStatement);

// free cursor - not required.

FreeBlob(blobvar);

FreeClob(clobvar);

INITIALIZE SET

LET x = 10; x = 10;

VALIDATE

VALIDATE LIKE

Not supported.

Program Flow Control Statements

 Table A-5. How 4GL Program Flow Control Statements map to EGL

I4GL EGL

/* In 14GL foreach does open, fetch and

close. */

DECLARE cursorname FOR stmt:

FOREACH cursorname USING a, b

INTO x,y,z

WITH REOPTIMIZE

END FOREACH

FOREACH

The EGL foreach statement does the fetch and close:

//DECLARE cursorname for stmt

Open cursorname using a, b

Foreach (from cursorname into x,y,z)

/* REOPTIMIZE not supported */

End

CALL fn1(a,b) RETURNING c;

LET c = fn1(a,b)

CALL fn1(a,b) RETURNING a

CALL fn1(a,b) RETURNING a,b

CALL fn1(rec.*) RETURNING rec2.*;

c = fn1(a,b);

c = fn1(a,b);

a = fn1(a,b);

fn1(a,b, /* returning */ a,b);

fn1(rec, /* returning */rec2);

CASE SWITCH CASE ... CASE ... CASE

CONTINUE CONTINUE

Appendix A. I4GL to EGL Syntax Mapping A-5

Table A-5. How 4GL Program Flow Control Statements map to EGL (continued)

I4GL EGL

DATABASE mydb@SERVER2;

DEFINE rec RECORD LIKE table.*

/*14GL internally puts a $database

statement in the main function in the

.ec file. This generates in MIN*/

//DATABASE mydb@SERVER2

import IfmxSchema.server2.mydb.*;

rec IfmxSchema.server2.mydb.rec_like_table;

DefineDatabaseAlias(″DEFAULT″,getProperty

(″mydb@SERVER2″));

connect(″DEFAULT″,

getProperty(″DEFAULT_USERID″),

getProperty(″DEFAULT_PASSWORD″), type1, explicit,

repeatableRead, noAutoCommit);

// ANSI DB settings

EXIT CASE

EXIT CONSTRUCT

EXIT DISPLAY

EXIT FOR

EXIT FOREACH

EXIT INPUT

EXIT MENU

EXIT PROGRAM

EXIT REPORT

EXIT WHILE

Exit

Exit openUI

Exit openUI

Exit for

Exit foreach

Exit openUI

Exit openUI

EXIT PROGRAM

Call reportName_TERMINATE():

Exit while

FOR FOR

GLOBALS filename //GLOBALS ″filename″

This statement is ignored. The required Imports and Use

statements are generated based on the Database Schema and

Library manifests included in the Application conversion

project and the individual library references to those external

projects.

GOTO GOTO

IF IF

IF <cond> THEN

ELSE

END IF

if (<cond>)

else

end

OUTPUT TO REPORT Indirectly via external tool

RETURN;

RETURN a;

RETURN rec.*;

RETURN a, b;

RETURN rec.col_a THRU rec.col_c;

RETURN:

RETURN (a);

Move rec to $_retvar1; RETURN;

$_retvar1 = a; $_retvar2 = b; return;

function (

$_retvar_1 type OUT,

$_retvar_2 type OUT,

$_retvar_3 type OUT)

...

$_retvar_1 = rec.col_a;

$_retvar_2 = rec.col_b;

$_retvar_3 = rec.col_c;

return;

end

A-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-5. How 4GL Program Flow Control Statements map to EGL (continued)

I4GL EGL

RUN ″cmd″ LINE

RUN ″cmd″ FORM

RUN ″cmd″ WITHOUT WAITING

RUN .. RETURNING x;

CallCmd(″cmd″, Line);

CallCmd(″cmd″, Form);

StartCmd(″cmd″, Line);

CallCmd(″cmd″,Line);

x = sysVar.returnCode;

SQL ... END SQL execute #sql {...}

WHILE cond

...

END WHILE

while (cond)

...

end

Note: Mappings for the FINISH REPORT, OUTPUT TO REPORT, START REPORT

and TERMINATE REPORT 4GL Program Flow Control statements are

included in the “4GL Report Execution Statements” on page A-11.

Compiler Directives

 Table A-6. How 4GL Compiler Directives map to EGL

I4GL EGL

DEFER INTERRUPT

DEFER QUIT

consoleLib.deferInterrupt=YES;

consoleLib.deferQuit=YES;

GLOBALS filename Import packageOfFilename.*;

Use filename; // library name.

SQL ... END SQL EXECUTE #sql{ ... }

Note: Program variables must be identified by the colon ″:″

prefix.

WHENEVER SQLERROR CONTINUE;

SQL ... END SQL

SQL ... END SQL

//WHENEVER SQLERROR CONTINUE;

Try EXECUTE #sql{ ... } onException end;

Try EXECUTE #sql{ ... } onException end;

WHENEVER SQLERROR CALL XYZ;

SQL ... END SQL

SQL ... END SQL

//WHENEVER SQLERROR CALL;

try EXECUTE #sql{ ... } onException

/* ERROR */ xzy()

end

try EXECUTE #sql{ ... } onException

/* ERROR */ xzy()

end

WHENEVER SQLERROR GOTO :ABC;

SQL ... END SQL

SQL ... END SQL

//WHENEVER SQLERROR GOTO;

try

execute #sql{ ... };

execute #sql(... };

onException

/* ERROR */ gotoABC;

end

Appendix A. I4GL to EGL Syntax Mapping A-7

Table A-6. How 4GL Compiler Directives map to EGL (continued)

I4GL EGL

WHENEVER SQLERROR GOTO :ABC

WHENEVER WARNING STOP

SQL ... END SQL

SQL ... END SQL

/*whenever sqlerror goto :ABC*/

/*whenever warning stop */;

try execute #sql{ ... };

if (SQLCODE > 0 && SQLCODE !=100) then exit

program;

end /* WARNING */

onException

/* ERROR */ gotoABC;

end

try execute #sql{ ...};

if (SQLCODE > 0 && SQLCODE !=100) then exit

program;

end /* WARNING */

onException

/* ERROR */ gotoABC;

end

WHENEVER ERROR CALL;

SQL ... END SQL

INPUT ... END INPUT

//WHENEVER ERROR CALL abc;

try Execute #sql{ ... } onException

 call abc();

end

try openUI ... End onException

 call abc();

end

WHENEVER SQLWARNING CALL abc;

SQL ... END SQL

SQL ... END SQL

//WHENEVER SQLWARNING CALL abc;

try Execute #sql{ ... } onException end

if sqlcode > 0 then

 call abc();

end

try Execute #sql{ ... } onException end

if sqlcode > 0 then

 call abc();

end

I4GL Forms to EGL Console User Interface

 Table A-7. How 4GL Form Statements map to EGL Console User Interface Statements

I4GL EGL

CLEAR SCREEN activateWindow (consoleLib.screen);

--or--

clearActiveWindow();

CLEAR WINDOW SCREEN clearWindow(consolelib.screen);

CLEAR WINDOW windowName clearWindow([windowObject]);

--or--

clearWindowByName({windowName})

CLEAR FORM clearActiveForm();

CLEAR listOfFieldNames clearFields()

--or--

clearConsoleFields(fieldName {, fieldName});

CLOSE FORM NA

A-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-7. How 4GL Form Statements map to EGL Console User Interface Statements (continued)

I4GL EGL

CLOSE WINDOW windowName closeWindow(windowObject);

--or--

closeWindowByName(windowName);

CONSTRUCT openUI {isConstruct=yes} formObject end

CURRENT WINDOW IS windowName activateWindow(windowObject);

--or--

activateWindowByName(windowName)

CURRENT WINDOW IS SCREEN activateWindow(consoleLib.screen)

DEFER INTERRUPT consoleLib.deferInterrupt=yes;

DEFER QUIT consoleLib.deferQuit=yes;

DISPLAY displayLineMode()

DISPLAY AT x,y; displayAtPosition()

DISPLAY AT x; displayAtLine():

DISPLAY a, b TO field1, field2 openUI

{displayOnly=yes, bindingbyName=no}

activeForm.field1, activeForm.field2 bind a,b end;

DISPLAY BY NAME fname, lname; openUI

{displayOnly=yes, bindingbyName=yes}

activeForm bind fname, lname end;

DISPLAY BY NAME Re.* openUI

{displayOnly=yes, bindingbyName=yes}

activeForm bind <each rec element>;

DISPLAY ARRAY openUI {displayOnly=yes} formArrayDictionary bind

programRecordArray end

DISPLAY FORM clearForm()

openUI {displayOnly=yes} consoleForm end

ERROR displayError (message);

INPUT openUI consoleForm bind program Variables end
--or--

openUI consoleFieldList bind program Variables end

INPUT ARRAY openUI activeForm.arrayDictionary bind programRecordArray end

MENU openUI new Menu {

labelText=″Menu1″,

menuItems=[new MenuItem {accelerators={″F1″],

name=″Cmd1″,

labelText=″Command1″

}

//Repeat for other commands --separate each with a comma

]

}

OnEvent

(MENU_ACTION:″Cmd1″)

...egl statements...

end;

MESSAGE displayMessage (message);

NEXT FIELD fieldName gotoFieldByName(fieldIdentifier)

OPEN FORM formName from fileName formNameConsoleformType;

Appendix A. I4GL to EGL Syntax Mapping A-9

Table A-7. How 4GL Form Statements map to EGL Console User Interface Statements (continued)

I4GL EGL

OPEN WINDOW windowName the Window {name=″theWindow″, size=[rr,cc].

Position=[zz,yy]};

openWindow (theWindow);

--or--

openWindowByName(″theWindow″);

Migration Mapping:

 openWindow(new Window{

 name=″theWindow″, size=[rr,cc],

 position=[xx,yy]});

OPTIONS Use consoleLib.property

PROMPT openUI new Prompt

{message=″Do you want to continue?″, isChar=yes} bind

userAnswer end;

--or--

myPrompt Prompt

{message=″What is your name?″};

openUI myPrompt bind usersName

end;

For Line Mode operations, use promptLineMode():

userAnswer Char(1);

userAnswer=promptLineMode

(″Continue (y/n)?″);

SCROLL scrollDownPage() -or-

scrollDownLines(integerCount) -or-

scrollUpPage() -or-

scrollUpLines (integerCount)

ARR_COUNT() currentArrayCount()

ARR_CURR() currentArrayDataLine()

SCR_LINE() currentArrayScreenLine()

FGL_DRAWBOX() drawBox()
--or--

drawBoxWithColor()

FGL_GETKEY() getKey()

FGL_KEYVAL() getKeyCode()

NEXT OPTION fieldName gotoMenuItem()

--or--

gotoMenuItemByName()

INFIELD() isCurrentField()
--or--

isFieldModifiedByName()

FIELD_TOUCHED() isFieldModified()

--or--

isFieldModifiedByName()

FGL_LASTKEY lastKeyTyped()

NEXT_FIELD nextField()

PREVIOUS_FIELD previousField()

A-10 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-7. How 4GL Form Statements map to EGL Console User Interface Statements (continued)

I4GL EGL

FGL_SETCURRLINE setArrayLine()

FGL_SCR_SIZE() syslib.size(screenArray)

SHOWHELP() showHelp()

4GL Report Execution Statements

The Conversion Utility converts I4GL Reports files into both EGL (.egl) and

JasperReport (.jrxml) files. For specific information on how I4GL Report syntax

converts, see “Understanding Report Conversion” on page 4-14.

The following I4GL Report statements do not convert to EGL or JasperReports;

however, to maintain syntactically correct code, the Conversion Utility will

generate redundant code in the report handler for these statements:

v EXIT REPORT

v NEED

v PAUSE

 Table A-8. How 4GL Report Execution Statements map to EGL/JasperReport

I4GL EGL / JasperReport

PRINT See “I4GL FORMAT Section” on page 4-19.

SKIP Indirectly mapped via external tool.

I4GL Report Driver Statements

I4GL report driver statements map to EGL functions. For an example of I4GL

report code and the comparable examples of the EGL driver functions, see

Appendix B, “I4GL Report Conversion Code Example.”

 Table A-9. How 4GL Report Driver Statements map to EGL

I4GL EGL

FINISH REPORT reportname reportname_FINISH()

OUTPUT TO REPORT reportname

OUTPUT TO REPORT reportname (a, b, c)

reportname_OUTPUT ()

reportname_OUTPUT (a, b, c)

START REPORT reportname report options reportname_START()

Note: START REPORT report options do not map to

EGL. In addition, the EGL function call has no

arguments and no return value.

TERMINATE REPORT reportname reportname_TERMINATE ()

Built-in 4GL Functions, Variables, and Constants

 Table A-10. How 4GL Built-in functions, variables, and constants map to EGL

I4GL EGL

ARG_VAL (int-expr) getCmdLineArg(int-expr)

ARR_COUNT () currentArrayCount()

Appendix A. I4GL to EGL Syntax Mapping A-11

Table A-10. How 4GL Built-in functions, variables, and constants map to EGL (continued)

I4GL EGL

ASCII (int-expr) integerAsChar(int-expr)

COLUMN int-expr

COLUMN int-const, PAGENO, LINENO

No direct mapping. Indirectly mapped via external

tool.

CURSOR_NAME (″Identifier″) Not supported.

DATE(char) dateValue(char)

Date(integer) dateValue(integer)

DAY(datevalOrDatetime) dayOf(dateexpr);

DOWNSHIFT (char-expr) lowercase(charexpr)

ERR_PRINT (int-expr) displayError(err_get(″number″));

ERR_QUIT (int-expr) displayError(err_get(″number″));

exit program;

ERRORLOG (int-expr) errorLog()

EXTEND (value, qualifier) extend (value, qualifierpattern)

FALSE 0/*FALSE*/

FGL_DRAWBOX (nlines, ncols, begy, begx, color) drawBox(int, int, int, int)

drawBoxWithColor(int, int, int, int, colorKind)

FGL_GETENV (char-expr) getproperty(charexpr)

FGL_GETKEY () // INPUT KEYSTROKE getKey()

FGL_KEYVAL (char-expr) getKeyCode(String)

FGL_LASTKEY() //Doesn’t wait, lastKeyTyped()

FGL_SCR_SIZE (arrayname)

FGL_SCR_SIZE (″arrayname″);

syslib.size(activeForm[arrayname]);
syslib.size(activeForm.″arrayname″);

FGL_SETCURRLINE() setArrayLine()

Intval UNITS dateTImeUnit IntervalValueWithPattern(intval, ″UnitsString″);

LENGTH (char-expr) StrLeng(charexpr)

LET a = ERR_GET (SQLCODE) // Get Message

LET a = ERR_GET (int-expr) // Get Message

err_get(SQLCODE);

err_get(int-expr);

MONTH (datevalOrDatetime) monthOf(dateexpr);

MDY (intmonth, intdays, intyear) MDY(intmonth, intdays, intyear)

NEXT FIELD

NEXT FIELD fieldname

nextField()

gotoFieldByName (″fieldname″);

NEXT FIELD PREVIOUS previousField()

NEXT OPTION name gotoMenutItemByName(″name″);

NUM_ARGS () getCmdLineArgCount()

ORD (char-expr) characterAsInteger(char-expr)

SCR_LINE() currentArrayScreenLine()

SET_COUNT (int-expr) setCurrentArrayCount()

SHOWHELP (int-expr) showHelp(″int-expr″);

STARTLOG (″filename.filetype″) startLog()

TIME timeStamp(″hhmmss″);

A-12 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-10. How 4GL Built-in functions, variables, and constants map to EGL (continued)

I4GL EGL

TIME (DateTimeValue) currentTime();

TODAY currentDate();

TRUE I/*TRUE*/

UPSHIFT (char-expr) uppercase(char-expr)

WEEKDAY (datevalOrDatetime) weekdayOf(datexpr);

YEAR (datevalOrDatetime) yearOf(dateexpr);

Built-in and External SQL Functions and Procedures

 Table A-11. How 4GL Built-in and External SQL Functions and Procedures map to EGL

I4GL EGL

CREATE FUNCTION Execute #sql{ create function ... }

CREATE FUNCTION FROM Not supported

CREATE PROCEDURE FROM Not supported

CREATE ROUTINE FROM Not supported

EXECUTE FUNCTION Execute #sql{ execute function ... }

EXECUTE PROCEDURE Execute #sql{ execute procedure ... }

Operators

Keyword-Based Operators

 Table A-12. How 4GL Keyword-Based Operators map to EGL

I4GL EGL

ASCII int-expr integerAsCharacter(int-expr)

AND &&

Value BETWEEN expr1 AND expr2 Value >= expr1 && Value <= expr2

char-expr CLIPPED Clip(char_expr)

CURRENT

CURRENT qualifier

currentTimeStamp()

extend (currentTimeStamp(), ″yyyMMddhhmmss″;

FIELD_TOUCHED (field-list) isFieldModified(consoleField)

--or--

isFieldModifiedByName(String)

GET_FLDBUF (field)

GET_FDLDBUF (field-list)

activeForm.field

individual assignments with corresponding field.Value

INFIELD (field) isCurrentField(ConsoleField)

isCurrentFieldByName(String)

INT_FLAG interruptRequested

Xyz IS NULL

Xyz IS NOT NULL

Xyz IS NULL

Xyz NOT NULL

LENGTH (char-expr) StrLen (char-expr)

Appendix A. I4GL to EGL Syntax Mapping A-13

Table A-12. How 4GL Keyword-Based Operators map to EGL (continued)

I4GL EGL

LIKE

x NOT LIKE y

like

!(x like y)

LINENO Indirectly supported by external tool

MATCHES expr

x NOT MATCHES y

matches

!(x matches y)

int-expr MOD int-expr Int-expr % int-expr

NOT !

NOT FOUND 100/*NOTFOUND*/

OR ||

PAGENO Indirectly supported by external tool

QUIT_FLAG quitRequested

int-expr SPACE Spaces(int-expr)

int-expr SPACES Spaces(int-expr)

STATUS SQLCODE

TIME See “Built-in 4GL Functions, Variables, and Constants”

on page A-11.

TODAY See “Built-in 4GL Functions, Variables, and Constants”

on page A-11.

int-expr UNITS time-keyword See “Built-in 4GL Functions, Variables, and Constants”

on page A-11.

int-expr USING format-string

char-expr USING format-string

datetime USING format-string

Format(expression, formatString)

formatNumber(intval, ″######″)

formatDate(mydate, ″mm/dd/yy″)

format(char-exp, formatString)

formatDate(datetime, formatString)

char-expr WORDWRAP Handled by JasperReports

Operators Represented by Non-Alphabetic Symbols

 Table A-13. How Operators represented by Non-Alphabetic Symbols map to EGL

Alphabetic 4GL EGL

Addition + +

Comments -- Single-line comment

Single-line comment

{ multiple-line comment }

// Single line comment

/* multiple-line comment */

Division / /

Exponentiation ** **

Greater than > >

A-14 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-13. How Operators represented by Non-Alphabetic Symbols map to EGL (continued)

Alphabetic 4GL EGL

Greater than or equal to >= >=

Less than < <

Less than or equal to <= <=

Membership . .

Modulus MOD %

Multiplication * *

Not equal to != or <> !=

Sub string [first,last] [first:last]

Subtraction - -

Unary negative - -

Unary positive + +

SQL Cursor Manipulation Statements

 Table A-14. How 4GL Cursor Manipulation Statements map to EGL

I4GL EGL

CLOSE cursorname try close cursorname; onException end

DECLARE c CURSOR FOR stmt;

DECLARE C CURSOR FOR SELECT * FROM

SYSTABLES;

/* declare c cursor for stmt */

try PREPARE $_STMT_C FROM ″SELECT * FROM

SYSTABLES″; onException end

Note: The Scroll and Hold attributes from DECLARE

are now specified when the cursor is opened.

// WHENEVER SQLERROR STOP;

FETCH c;

FETCH NEXT C;

FETCH PREVIOUS C;

FETCH RELATIVE 1 C;

FETCH RELATIVE -1 C;

FETCH FIRST C;

FETCH LAST C;

/* FYI: WHENEVER SQLERROR STOP */

/

get next from c;

get next from C;

get previous from C

get relative(1) from C;

get relative(-1) from C;

get first from C;

get last from C;

FLUSH NO-OP

FREE freeSQL

OPEN OPEN

OPEN cursor WITH statementid;

OPEN cursor WITH statementid USING param1,

param2;

OPEN cursor SCROLL WITH statementid;

OPEN ... WITH REOPTIMIZE OPEN

/* REOPTIMIZE not supported */

PREPARE PREPARE

PUT EXECUTE

SET AUTOFREE NO-OP

SQL ... END execute #sql { ... }

Appendix A. I4GL to EGL Syntax Mapping A-15

SQL Data Definition Statements

 Table A-15. How 4GL SQL Data Definition Statements map to EGL

I4GL EGL

ALTER INDEX Execute #sql{ ... }

ALTER FRAGMENT Execute #sql{alter fragment ... }

ALTER TABLE Execute #sql{ ... }

CLOSE DATABASE Execute #sql{ close database }

CREATE DATABASE Execute #sql{ ... }

CREATE EXTERNAL TABLE Execute #sql{ ... }

CREATE INDEX Execute #sql{ ... }

CREATE PROCEDURE FORM Execute #sql{ ... }

CREATE ROLE Execute #sql{ ... }

CREATE SCHEMA Execute #sql{ ... }

CREATE SYNONYM Execute #sql{ ... }

CREATE TABLE Execute #sql{ ... }

CREATE TRIGGER Execute #sql{ ... }

CREATE VIEW Execute #sql{ ... }

CONNECT

DATABASE

defineDatabaseHandle(getProperty(dbname));

connect(getProperty(″DEFAULT_USER″),

 getProperty(″DEFAULT_PASSWORD″),

 explicit,

 autoCommit);

DROP DATABASE Execute #sql{ ... }

DROP INDEX Execute #sql{ ... }

DROP PROCEDURE Execute #sql{ ... }

DROP ROLE Execute #sql{ ... }

DROP SYNONYM Execute #sql{ ... }

DROP TABLE Execute #sql{ ... }

DROP TRIGGER Execute #sql{ ... }

DROP VIEW Execute #sql{ ... }

RENAME COLUMN Execute #sql{ ... }

RENAME DATABASE Execute #sql{ ... }

RENAME TABLE Execute #sql{ ... }

SQL Data Manipulation Statements

 Table A-16. How 4GL Data Manipulation Statements map to EGL

I4GL EGL

INSERT Execute #sql{ INSERT ... }

DELETE Execute #sql{ DELETE ... }

LOAD loadTable(filename, sql, delimiter);

OUTPUT Indirectly by external tool

A-16 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-16. How 4GL Data Manipulation Statements map to EGL (continued)

I4GL EGL

SELECT Execute #sql{ select } into ...

UNLOAD unloadTable(filename, sql, delimiter);

UPDATE Execute #sql{ UPDATE ... }

SQL Dynamic Management Statements

 Table A-17. How 4GL SQL Dynamic Management Statements map to EGL

I4GL EGL

EXECUTE EXECUTE statement

EXECUTE IMMEDIATE Execute #SQL{ ... }

FREE FREE

PREPARE PREPARE

SET DEFERRED_PREPARE NO-OP

SQL Query Optimization Statements

 Table A-18. How 4GL SQL Query Optimization Statements map to EGL

I4GL EGL

SET OPTIMIZATION Execute #sql{set optimization ... }

SET EXPLAIN Execute #sql{set explain ... }

SET PDQPRIORITY Execute #sql{ ... }

SET RESIDENCY Execute #sql{ ... }

SET SCHEDUE LEVEL Execute #sql{ ... }

UPDATE STATISTICS Execute #sql{ ... }

SQL Data Access Statements

 Table A-19. How 4GL SQL Data Access Statements map to EGL

I4GL EGL

GRANT Execute #sql{ ... }

GRANT FRAGMENT Execute #sql{ ... }

LOCK TABLE Execute #sql{ ... }

REVOKE Execute #sql{ ... }

REVOKE FRAGMENT Execute #sql{ ... }

SET ISOLATION Execute #sql{ ... };

SET LOCK MODE Execute #sql{ ... }

SET ROLE Execute #sql{ ... }

SET SESSION Execute #sql{ ... }

SET TRANSACTION Execute #sql{ ... }

UNLOCK TABLE Execute #sql{ ... }

Appendix A. I4GL to EGL Syntax Mapping A-17

SQL Data Integrity Statements

 Table A-20. How 4GL SQL Data Integrity Statements map to EGL

I4GL EGL

BEGIN WORK beginDatabaseTransaction();

COMMIT WORK commit()

ROLLBACK WORK rollback()

SET Database Object Mode Execute #sql{... }

SET LOG Execute #sql{... }

SET PLOAD FILE Execute #sql{... }

SET TRANSACTION MODE Execute #sql{... }

START VIOLATIONS TABLE Execute #sql{... }

STOP VIOLATIONS TABLE Execute #sql{... }

SQL Stored Procedure Statements

 Table A-21. How SQL Stored Procedure Statements map to EGL

I4GL EGL

EXECUTE PROCEDURE Execute #sql{ ... }

SET DEBUG FILE TO Execute #sql{ ... }

SQL Client/Server Connection Statements

 Table A-22. How 4GL Connection Statements map to EGL

I4GL EGL

SET CONNECTION ’conname’;

SET CONNECTION convar;

setCurrentDatabase(″conname″);

setCurrentDatabase (convar)

SET CONNECTION dbname;

SET CONNECTION DEFAULT;

SET CONNECTION ... DORMANT

setCurrentDatabase(″dbname″)

setCurrentDatabase (″DEFAULT″);

// set connection ... dormant

A-18 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-22. How 4GL Connection Statements map to EGL (continued)

I4GL EGL

CONNECT TO db@server

CONNECT TO db AS ’conname’

CONNECT TO DEFAULT

setDatabaseHandle(getProperty(″db@server″));

connect(...);

setDatabaseHandle(getProperty(″db@server″));

connect(...)

try try disconnect(); onException end

try DefineDatabaseAlias(

getProperty(″@myserver″));

getProperty(″DEFAULT_USERID″),

getProperty(″DEFAULT_PASSWORD″),

type1, explicit, repeatableRead,

noAutoCommit);

onException end

onException end

DISCONNECT CURRENT

DISCONNECT DEFAULT

DISCONNECT ALL

DISCONNECT ’conname’

DISCONNECT convar

disconnect()
disconnect(″DEFAULT″);
disconnectAll();
disconnect(″conname″);
disconnect(convar);

SQL Optical Subsystems Statements

 Table A-23. How SQL Optical Subsystems Statements map to EGL

I4GL EGL

ALTER OPTICAL CLUSTER Execute #sql{ ... }

CREATE OPTICAL CLUSTER Execute #sql{ ... }

DROP OPTICAL CLUSTER Execute #sql{ ... }

RELEASE Execute #sql{ ... }

RESERVE Execute #sql{ ... }

SET MOUNTING TIMINOUT Execute #sql{ ... }

Environment Variables

 Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties

I4GL Environment Variables EGL Properties JDBC Properties

C4GLFLAGS NO-OP NO-OP

C4GLNOPARAMCHK NO-OP NO-OP

CC NO-OP NO-OP

COLUMNS NO-OP NO-OP

CLIENT_LOCALE CLIENT_LOCALE CLIENT_LOCALE

COLLCHAR NO-OP NO-OP

DBANSIWARN NO-OP NO-OP

DBCENTURY NO-OP DBCENTURY

Appendix A. I4GL to EGL Syntax Mapping A-19

Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties (continued)

I4GL Environment Variables EGL Properties JDBC Properties

DBDATE defaultDateFormat DBDATE

DBDELIMITER defaultDbDelimiterFormat NO-OP

DBEDIT NO-OP NO-OP

DBESCWT NO-OP NO-OP

DBFORM NO-OP NO-OP

DBFORMAT NO-OP NO-OP

DBLANG NO-OP NO-OP

DBMONEY defaultMoneyFormat

defaultNumericFormat

NO-OP

DBPATH NO-OP NO-OP

DBPRINT NO-OP NO-OP

DBREMOTECMD NO-OP NO-OP

DBSPACETEMP NO-OP DBSPACETEMP

DBSRC NO-OP NO-OP

DBTEMP NO-OP DBTEMP

DBTIME NO-OP NO-OP

DBUPSPACE NO-OP DBUPSPACE

DBAPICODE NO-OP NO-OP

DB_LOCALE DB_LOCALE DB_LOCALE

DBNLS NO-OP NO-OP

ENVIGNORE NO-OP NO-OP

FET_BUF_SIZE NO-OP FET_BUF_SIZE

FGLPCFLAGS NO-OP NO-OP

FGLSKIPNXTPG NO-OP NO-OP

GL_DATE defaultDateFormat NO-OP

GL_DATETIME defaultTimeStampFormat NO-OP

INFORMIXC NO-OP NO-OP

INFORMIXONRETRY NO-OP NO-OP

INFORMIXCONTINUE NO-OP NO-OP

INFORMIXDIR NO-OP NO-OP

INFORMIXSERVER INFORMIXSERVER INFORMIXSERVER

INFORMIXSHMBASE NO-OP NO-OP

INFORMIXTERM NO-OP NO-OP

IXOLDFLDSCOPE NO-OP NO-OP

LANG NO-OP NO-OP

LINES NO-OP NO-OP

ONCONFIG NO-OP NO-OP

PATH NO-OP NO-OP

PDQPRIORITY NO-OP PDQPRIORITY

PROGRAM_DESIGN_DBS NO-OP NO-OP

A-20 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties (continued)

I4GL Environment Variables EGL Properties JDBC Properties

PSORT_DBTEMP NO-OP PSORT_DBTEMP

PSORT_NPROCS NO-OP PSORT_NPROCS

SQLEXEC NO-OP NO-OP

SQLRM NO-OP NO-OP

SQLRMDIR NO-OP NO-OP

SUPOUTPIPEMSG NO-OP NO-OP

SERVER_LOCALE NO-OP NO-OP

TERM NO-OP NO-OP

TERMCAP NO-OP NO-OP

TERMINFO NO-OP NO-OP

Appendix A. I4GL to EGL Syntax Mapping A-21

A-22 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix B. I4GL Report Conversion Code Example

In This Appendix

This appendix provides an example of I4GL report code and the comparable

examples of the EGL driver functions.

4GL Report Code

REPORT r_invoice (c, x)

 DEFINE c RECORD

 customer_num int,

 fname char(15),

 lname char(15),

 company char(20),

 address1 char(20),

 address2 char(20),

 city char(15),

 state char(2),

 zipcode char(5),

 phone char(18),

 END RECORD

 DEFINE x RECORD

 order_num INT,

 order_date date,

 ship_instruct Char(40),

 backlog char,

 po_num char(10),

 ship_date date,

 ship_weight decimal(8,2),

 ship_charge money(6,2)

 item_num smallint,

 stock_num smallint,

 manu_code char(3),

 quantity smallint,

 total_price money(8,2),

 description char(15),

 unit_price money(6,2),

 unit char(4),

 unit_descr char(15),

 manu_name char(10)

 END RECORD

...

...

...

END REPORT

EGL Driver Functions Generated from 4GL Code

Function r_invoice_START()

 execute #sql {

 create temp table r_invoice_report_table (

 c_customer_num int ,

 c_fname char (15),

 c_lname char (15) ,

 c_company char (20) ,

 c_address1 char (20) ,

 c_address2 char (20) ,

 c_city char (15) ,

 c_state char (2) ,

© Copyright IBM Corp. 2005 B-1

c_zipcode char (5) ,

 c_phone char (18) ,

 x_order_num int ,

 x_order_date date ,

 x_ship_instruct char (40) ,

 x_backlog char ,

 x_po_num char (10) ,

 x_ship_date date ,

 x_ship_weight decimal (8, 2),

 x_ship_charge_money (6, 2),

 x_item_num smallint ,

 x_stock_num smallint ,

 x_manu_code char (3) ,

 x_quantity smallint ,

 x_total_price money (6, 2),

 x_description char (15) ,

 x_unit_price money (6, 2),

 x_unit char (4) ,

 x_unit_descr char (15) ,

 x_manu_name char (10)

)

 }

end

Function r_invoice_OUTPUT (c recordtype_v4_c IN, x recordtype_v4_x IN)

 Prepare insert_stmt from "insert into r_invoice_report_table +

 "values(?,)";

 Execute insert_stmt using (

 c.customer_num,

 c.fname,

 c.lname,

 c.company,

 c.address1,

 c.address2,

 c.city,

 c.state,

 c.zipcode,

 c.phone,

 x.order_num,

 x.order_date,

 x.ship_instruct,

 x.backlog,

 x.po_num,

 x.ship_date,

 x.ship_weight,

 x.ship_charge,

 x.item_num,

 x.stock_num,

 x.manu_code,

 x.quantity,

 x.total_price,

 x.description,

 x.unit_price,

 x.unit,

 x.unit_descr,

 x.manu_name

)

End

Function r_invoice_FINISH()

 egl4glReport Report;

 egl4glReportData ReportData;

 egl4glReport.reportDesignFile = "r_invoice_XML.jasper";

 egl4glReport.reportDestinationFile = "r_invoice.jrprint";

 egl4glReport.reportExportFile = "r_invoice.txt";

B-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

egl4glReportData.sqlStatement = "Select * From" +

 " r_invoice_report_table";

 egl4glReport.reportData = egl4glReportData;

 ReportLib.fillReport(egl4glReport, DATASOURCE_SQL_STATEMENT);

 ReportLib.exportReport(egl4glReport, EXPORT_TEXT);

 Execute #SQL {

 Drop Table r_invoice_report_table

 }

End

Function r_invoice_TERMINATE()

 Execute #SQL {

 Drop Table r_invoice_report_table

 }

End

...

...

 Record recordtype_v4_c type BasicRecord

 customer_num INT;

 fname UNICODE(15);

 lname UNICODE(15);

 company UNICODE(20);

 address1 UNICODE(20);

 address2 UNICODE(20);

 city UNICODE(15);

 state UNICODE(2);

 zipcode UNICODE(5);

 phone UNICODE(18);

END

 RECORD recordtype_v4_x type BasicRecord

 order_num INT;

 order_date DATE;

 ship_instruct UNICODE(40);

 ship_instruct UNICODE(10;

 backlog UNICODE(1);

 po_num UNICODE(10);

 ship_date DATE;

 ship_weight DECIMAL;

 ship_charge DECIMAL(6,2);

 item_num smallint;

 stock_num smallint;

 manu_code UNICODE(3);

 quantity smallint;

 total_price DECIMAL(8,2);

 description UNICODE(15);

 unit_price DECIMAL(6, 2):

 unit UNICODE(4);

 unit_descr UNICODE(15);

 manu_name UNICODE(10);

END

Appendix B. I4GL Report Conversion Code Example B-3

B-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix C. I4GL Form Code to EGL Form Code Example

In This Appendix

This appendix provides an example of I4GL form code and the generated EGL

form code.

4GL Form Code

------------------------ customer.4gl ----------------------------

GLOBALS

 DEFINE p_customer RECORD

 customer_num int,

 fname char(15),

 lname char(15),

 company char(20),

 address1 char(20),

 address2 char(20),

 city char(15),

 state char(2),

 zipcode char(5),

 phone char(18)

 END RECORD

END GLOBALS

MAIN

 DISPLAY "Starting form Customer "

 SLEEP 2

 CALL input_cust()

END MAIN

FUNCTION input_cust()

 OPEN FORM customer FROM "customer"

 DISPLAY FORM customer

 ATTRIBUTE(BLUE)

 DISPLAY "Press ESC to enter new customer data" AT 1,1

 INPUT BY NAME p_customer.*

 AFTER FIELD state

 DISPLAY "In field state "

 DISPLAY "Press ESC to enter new customer data", "" AT 1,1

 ON KEY (F1, CONTROL-F)

 DISPLAY "Control-F pressed"

 ON KEY (F2, CONTROL-Y)

 LET int_flag = TRUE

 EXIT INPUT

 END INPUT

 IF int_flag

 THEN

 LET int_flag = FALSE

 RETURN(FALSE)

 END IF

 DISPLAY BY NAME p_customer.fname ATTRIBUTE(MAGENTA)

END FUNCTION

© Copyright IBM Corp. 2005 C-1

----------------------- customer.per ------------------------

DATABASE FORMONLY

SCREEN

{

 Customer Form

 Number :[f000]

 Owner Name :[f001][f002]

 Company :[f003]

 Address :[f004]

 [f005]

 City :[f006] State:[a0] Zipcode:[f007]

 Telephone :[f008]

}

ATTRIBUTES

f000 = FORMONLY.customer_num TYPE INT, NOENTRY;

f001 = FORMONLY.fname TYPE CHAR, UPSHIFT ;

f002 = FORMONLY.lname TYPE CHAR, COLOR=RED;

f003 = FORMONLY.company TYPE CHAR, COMMENTS="Company name",

COLOR=MAGENTA;

f004 = FORMONLY.address1 TYPE CHAR, AUTONEXT, COLOR=MAGENTA;

f005 = FORMONLY.address2 TYPE CHAR, COLOR=MAGENTA;

f006 = FORMONLY.city TYPE CHAR, REQUIRED;

a0 = FORMONLY.state TYPE CHAR, UPSHIFT;

f007 = FORMONLY.zipcode TYPE CHAR;

f008 = FORMONLY.phone TYPE CHAR, PICTURE = "###-###-#### XXXXX";

INSTRUCTIONS

SCREEN RECORD customer (FORMONLY.customer_num THRU FORMONLY.fname)

EGL Code

------------------------ customer.egl --------------------------------

Package test;

/*Program*/

Library customer{localSQLScope=YES}

 p_customer recordtype_p_customer;

FUNCTION $_customer_i4glmain()

 displayLineMode("Starting Customer form ");

 wait(2);

 input_cust();

END

FUNCTION input_cust()

returns (INT)

 $_FORM_customer customerForm{ name="customer" };

 ConsoleLib.CurrentDisplayAttrs{ color=BLUE };

 displayFormByName("customer");

 displayAtPosition("Press ESC to enter new customer data"

 , 1,1);

 OpenUI{setInitial=YES, bindingByName=YES} activeForm bind

 p_customer.customer_num, p_customer.fname,

 p_customer.lname, p_customer.company,

 p_customer.address1, p_customer.address2,

 p_customer.city, p_customer.state,

 p_customer.zipcode, p_customer.phone

 onEvent(AFTER_FIELD:"state")

 displayLineMode("In field state ");

C-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

displayAtPosition("Press ESC to enter new customer data"

 + "" , 1,1);

 onEvent(ON_KEY:"F1","CONTROL_F")

 displayLineMode("Control-F pressed");

 onEvent(ON_KEY:"F2","CONTROL_Y")

 interruptRequested = YES;

 EXIT OpenUI;

 end;

 IF (interruptRequested != NO)

 interruptRequested = NO;

 RETURN((0/*FALSE*/));

 END

 ConsoleLib.CurrentDisplayAttrs{ color=MAGENTA };

 OpenUI { displayOnly=YES, bindingByName=YES } activeForm bind

 p_customer.fname End

END

END // Program

record recordtype_p_customer type SqlRecord

 customer_num INT;

 fname UNICODE(15);

 lname UNICODE(15);

 company UNICODE(20);

 address1 UNICODE(20);

 address2 UNICODE(20);

 city UNICODE(15);

 state UNICODE(2);

 zipcode UNICODE(5);

 phone UNICODE(18);

 END

-------------------------- customer_program.egl ----------------------

Package test;

Program customer_program

use customer;

Function main()

 $_customer_i4glmain();

end

end /* Program */

-------------------------- customerForm.egl ---------------------------

Package test;

Record customerForm type ConsoleForm { formSize = [13,80],

 showBrackets = yes}

 *ConsoleField { position = [3,28], value = "Customer Form" };

 *ConsoleField { position = [5,9], value = "Number :" };

 *ConsoleField { position = [6,9], value = "Owner Name :" };

 *ConsoleField { position = [7,9], value = "Company :" };

 *ConsoleField { position = [8,9], value = "Address :" };

 *ConsoleField { position = [10,9], value = "City :" };

 *ConsoleField { position = [10,40], value = "State:" };

 *ConsoleField { position = [10,51], value = "Zipcode:" };

 *ConsoleField { position = [11,9], value = "Telephone :" };

 customer_num ConsoleField { position = [5,23], fieldLen = 11,

 dataType = "int", protect = yes };

 fname ConsoleField { position = [6,23], fieldLen = 15,

 dataType = "unicode", caseFormat = upper };

 lname ConsoleField { position = [6,40], fieldLen = 15,

 dataType = "unicode", color = RED };

 company ConsoleField { position = [7,23], fieldLen = 20,

Appendix C. I4GL Form Code to EGL Form Code Example C-3

dataType = "unicode", comment = "Company name", color = MAGENTA };

 address1 ConsoleField { position = [8,23], fieldLen = 20,

 dataType = "unicode", autonext = yes, color = MAGENTA };

 address2 ConsoleField { position = [9,23], fieldLen = 20,

 dataType = "unicode", color = MAGENTA };

 city ConsoleField { position = [10,23],fieldLen = 15,

 dataType = "unicode", inputRequired = yes };

 state ConsoleField { position = [10,47],fieldLen = 2,

 dataType = "unicode", caseFormat = upper };

 zipcode ConsoleField { position = [10,60],fieldLen = 5,

 dataType = "unicode" };

 phone ConsoleField { position = [11,23],fieldLen = 18,

 dataType = "unicode", pattern = "###-###-#### XXXXX" };

 customer Dictionary { customer_num=customer_num, fname=fname,

 lname=lname, company=company,

 address1=address1, address2=address2,

 city=city, state=state, zipcode=zipcode,

 phone=phone

 };

end

C-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix D. Configuration File Templates

In This Appendix

This appendix provides template configuration files for Database Schema

Extraction, Shared Library, and I4GL Application projects.

Note: If you are creating a configuration file manually, do not use any characters

that would prevent the XML Parser from correctly differentiating values

from the XML reserved characters. To prevent the XML parser from a

possible misinterpretation, you should include the values for the XML

element in the <![CDATA[value]> tag .

Database Schema Extraction Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>

<!-- Internal DTD for Configuration file -->

<!DOCTYPE conversion [

 <!ELEMENT conversion (rootdir,dbconnection*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

 <!ATTLIST conversion type CDATA #FIXED "schema">

 <!ELEMENT rootdir (egldir,artifactsdir?)>

 <!ELEMENT egldir (#PCDATA)>

 <!ELEMENT artifactsdir (#PCDATA)>

 <!ELEMENT dbconnection (database,server,host,port,user,password)+>

 <!ATTLIST dbconnection extractSystemTables (yes|no) "no" >

 <!ATTLIST dbconnection client_locale CDATA #IMPLIED >

 <!ATTLIST dbconnection db_locale CDATA #IMPLIED >

 <!ELEMENT database (#PCDATA)>

 <!ELEMENT server (#PCDATA)>

 <!ELEMENT host (#PCDATA)>

 <!ELEMENT port (#PCDATA)>

 <!ELEMENT user (#PCDATA)>

 <!ELEMENT password ANY>

]>

<conversion project="stores7" type="schema">

 <rootdir>

 <egldir>C:\egl\src\stores7</egldir>

 <artifactsdir>C:\tmp\stores7\ConversionArtifacts</artifactsdir>

 </rootdir>

 <dbconnection extractSystemTables="no" client_locale="en_US.8859-1"

 db_locale="en_US.8859-1">

 <database><![CDATA[stores7]]></database>

 <server><![CDATA[myserver]]></server>

 <host>mymachine.location.company.com</host>

 <port>1999</port>

 <user>jdoe</user>

 <password><![CDATA[password]]></password>

 </dbconnection>

</conversion >

Shared Library Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>

<!-- Internal DTD for Configuration file -->

<!DOCTYPE conversion [

 <!ELEMENT conversion (rootdir, manifestfiles*, fglfiles?, formfiles?,

© Copyright IBM Corp. 2005 D-1

msgfiles*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

 <!ATTLIST conversion type CDATA #FIXED "library" >

 <!ATTLIST conversion locale CDATA #IMPLIED >

 <!ATTLIST conversion cursor (local | global) #IMPLIED>

 <!ATTLIST conversion defaultserver CDATA #IMPLIED>

 <!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>

 <!ELEMENT fgldir (#PCDATA)>

 <!ELEMENT egldir (#PCDATA)>

 <!ELEMENT artifactsdir (#PCDATA)>

 <!ELEMENT manifestfiles (file)+>

 <!ATTLIST manifestfiles type (schema | library) #REQUIRED>

 <!ELEMENT fglfiles (file)+>

 <!ELEMENT formfiles (file)+>

 <!ELEMENT fontconfigfile (file)>

 <!ELEMENT file (#PCDATA)>

 <!ELEMENT msgfiles (file)+>

 <!ATTLIST msgfiles locale CDATA #IMPLIED >

]>

<conversion project="SharedLibraryProject"type="library"

locale="en_US.8859-1" cursor="local" defaultserver="myserver">

 <rootdir>

 <fgldir><![CDATA[C:\i4gl\SharedLibraryProject\fgl]]></fgldir>

 <egldir>C:\egl\SharedLibraryProject</egldir>

 <artifactsdir</artifactsdir>

 </rootdir>

 <manifestfiles type="schema">

 <file>C:\temp\stores7\ConversionArtifacts\manifest\

 Stores7Manifest.xml

</file>

 </manifestfiles>

 <fglfiles>

 <file><![CDATA[fgl\d4_cust.4gl]]></file>

 <file><![CDATA[fgl\d4_demo.4gl]]></file>

 <file><![CDATA[fgl\d4_globals.4gl]]></file>

 </fglfiles>

 <!-- report font file, optional -->

 <fontconfigfile>

 <file><![CDATA[C:\Documents and Settings\Administrator\myfont.xml]]>

</file>

 </fontconfigfile>

</conversion >

Application Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>

<!-- Internal DTD for Configuration file -->

<!DOCTYPE conversion [

 <!ELEMENT conversion (rootdir, manifestfiles*, fglfiles?, formfiles?,

 msgfiles*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

 <!ATTLIST conversion type CDATA #FIXED "application" >

 <!ATTLIST conversion locale CDATA #IMPLIED >

 <!ATTLIST conversion cursor (local | global) #IMPLIED>

 <!ATTLIST conversion defaultserver CDATA #IMPLIED>

 <!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>

 <!ELEMENT fgldir (#PCDATA)>

 <!ELEMENT egldir (#PCDATA)>

 <!ELEMENT artifactsdir (#PCDATA)>

 <!ELEMENT manifestfiles (file)+>

 <!ATTLIST manifestfiles type (schema | library) #REQUIRED>

 <!ELEMENT fglfiles (file)+>

D-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<!ELEMENT formfiles (file)+>

 <!ELEMENT fontconfigfile (file)>

 <!ELEMENT file (#PCDATA)>

 <!ELEMENT msgfiles (file)+>

 <!ATTLIST msgfiles locale CDATA #IMPLIED >

]>

<conversion project="i4gldemo" type="application" locale="en_US.8859-1"

 defaultserver="myserver">

 <rootdir>

 <fgldir>C:\i4gl\src\i4gldemo</fgldir>

 <egldir>C:\egl\src\i4gldemo</egldir>

 <artifactsdir></artifactsdir>

 </rootdir>

 <manifestfiles type="schema">

 <file>C:/converted_projects/stores7/ConversionArtifacts/manifest/

Stores7Manifest.xml</file>

</manifestfiles>

<manifestfiles type="library">

 <file> C:\egl\SharedLibraryProject/ConversionArtifacts/manifest/

Stores7Manifest.xml</file>

</manifestfiles>

 <fglfiles>

 <file>d4_cust.4gl</file>

 <file>d4_demo.4gl</file>

 <file>d4_globals.4gl</file>

 <file>d4_load.4gl</file>

 <file>d4_main.4gl</file>

 <file>d4_orders.4gl</file>

 <file>d4_report.4gl</file>

 <file>d4_stock.4gl</file>

 </fglfiles>

 <formfiles>

 <file>forms\cust.per</file>

 <file>forms\custcur.per</file>

 <file>forms\custform.per</file>

 <file>forms\customer.per</file>

 <file>forms\ordcur.per</file>

 <file>forms\order.per</file>

 <file>forms\orderform.per</file>

 <file>forms\p_ordcur.per</file>

 <file>forms\state_list.per</file>

 <file>forms\stock1.per</file>

 <file>forms\stock_sel.per</file>

 </formfiles>

 <!-- example for converting UJIS message files -->

 <msgfiles locale="en_US.8859-1">

 <file>C:/i4gl/src/msg/en/0333/orders.msg</file>

 <file>C:/i4gl/src/msg/en/0333/customer.msg</file>

 </msgfiles>

 <msgfiles locale="ja_jp.UJIS">

 <file>C:/i4gl/src/msg/jp/ujis/orders.msg</file>

 <file>C:/i4gl/src/msg/jp/ujis/customer.msg</file>

 </msgfiles>

</conversion>

Appendix D. Configuration File Templates D-3

D-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix E. Manifest File Examples

In This Appendix

This appendix provides template configuration files for Database Schema

Extraction, Shared Library, and I4GL Application projects.

Note: The examples below use the stores7 database.

Database Schema Extraction Project Manifest File Example

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE manifest [

 <!ELEMENT manifest (package*)>

 <!ATTLIST manifest project CDATA #REQUIRED >

 <!ATTLIST manifest type CDATA #FIXED "schema">

 <!ATTLIST manifest version CDATA #REQUIRED >

 <!ELEMENT package (table+)>

 <!ATTLIST package

 name CDATA #REQUIRED

 server CDATA #REQUIRED

 database CDATA #REQUIRED

 mode (ANSI) #IMPLIED>

 <!ELEMENT table (column+)>

 <!ATTLIST table

 name CDATA #REQUIRED

 egltype CDATA #REQUIRED

 owner CDATA #IMPLIED>

 <!ELEMENT column EMPTY>

 <!ATTLIST column

 name CDATA #REQUIRED

 dataitem CDATA #REQUIRED

 fgltype CDATA #REQUIRED

 egltype CDATA #REQUIRED

 size CDATA #IMPLIED

 start CDATA #IMPLIED

 end CDATA #IMPLIED

 precision CDATA #IMPLIED

 scale CDATA #IMPLIED>

]>

<!--

 Database schema manifest file generated by I4GL to EGL Conversion Utility

 Project Name : stores7

 Extracted on : Fri Jan 28 13:46:07 CST 2005

-->

<manifest project ="stores7" type="schema" version="1.0.0">

 <!-- Database : stores7 -->

 <package name="stores7.myserver.stores7" server="myserver"

database="stores7" >

 <table name ="call_type" egltype ="rec_like_call_type">

 <column name ="call_code"

dataitem ="dataitem_like_call_type_call_code"

 fgltype ="char" egltype ="unicode(1)" size ="1" />

 <column name ="code_descr"

dataitem ="dataitem_like_call_type_code_descr"

 fgltype ="char" egltype ="unicode(30)" size ="30" />

 </table>

 <table name ="catalog" egltype ="rec_like_catalog">

 <column name ="catalog_num"

© Copyright IBM Corp. 2005 E-1

dataitem ="dataitem_like_catalog_catalog_num"

 fgltype ="serial" egltype ="int" />

 <column name ="stock_num"

dataitem ="dataitem_like_catalog_stock_num"

 fgltype ="smallint" egltype ="smallint" />

 <column name ="manu_code"

dataitem ="dataitem_like_catalog_manu_code"

 fgltype ="char" egltype ="unicode(3)" size ="3" />

 <column name ="cat_descr"

dataitem ="dataitem_like_catalog_cat_descr"

 fgltype ="text" egltype ="clob" />

 <column name ="cat_picture"

dataitem ="dataitem_like_catalog_cat_picture"

 fgltype ="byte" egltype ="blob" />

 <column name ="cat_advert"

dataitem ="dataitem_like_catalog_cat_advert"

 fgltype ="varchar" egltype ="string" size ="255" />

 </table>

 <table name ="cust_calls" egltype ="rec_like_cust_calls">

 <column name ="customer_num" dataitem =

"dataitem_like_cust_calls_customer_num" fgltype ="int"

egltype ="int" />

 <column name ="call_dtime"

dataitem ="dataitem_like_cust_calls_call_dtime"

 fgltype ="datetime year to minute" egltype ="timestamp

("yyyyMMddhhmm")" start ="year"

end ="minute" />

 <column name ="user_id"

dataitem ="dataitem_like_cust_calls_user_id"

 fgltype ="char" egltype ="unicode(32)" size ="32" />

 <column name ="call_code"

dataitem ="dataitem_like_cust_calls_call_code"

 fgltype ="char" egltype ="unicode(1)" size ="1" />

 <column name ="call_descr"

dataitem ="dataitem_like_cust_calls_call_descr"

 fgltype ="char" egltype ="unicode(240)" size ="240" />

 <column name ="res_dtime"

dataitem ="dataitem_like_cust_calls_res_dtime"

 fgltype ="datetime year to minute" egltype ="timestamp

("yyyyMMddhhmm")" start ="year"

 end ="minute" />

 <column name ="res_descr"

dataitem ="dataitem_like_cust_calls_res_descr"

 fgltype ="char" egltype ="unicode(240)" size ="240" />

 </table>

 <table name ="customer" egltype ="rec_like_customer">

 <column name ="customer_num"

dataitem ="dataitem_like_customer_customer_num"

fgltype ="serial" egltype ="int" />

 <column name ="fname"

dataitem ="dataitem_like_customer_fname"

 fgltype ="char" egltype ="unicode(15)" size ="15" />

 <column name ="lname"

dataitem ="dataitem_like_customer_lname"

 fgltype ="char" egltype ="unicode(15)" size ="15" />

 <column name ="company"

dataitem ="dataitem_like_customer_company"

fgltype ="char" egltype ="unicode(20)" size ="20" />

 <column name ="address1"

dataitem ="dataitem_like_customer_address1"

 fgltype ="char" egltype ="unicode(20)" size ="20" />

 <column name ="address2"

dataitem ="dataitem_like_customer_address2"

 fgltype ="char" egltype ="unicode(20)" size ="20" />

 <column name ="city"

E-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

dataitem ="dataitem_like_customer_city" fgltype ="char"

 egltype ="unicode(15)" size ="15" />

 <column name ="state"

dataitem ="dataitem_like_customer_state" fgltype ="char"

 egltype ="unicode(2)" size ="2" />

 <column name ="zipcode"

dataitem ="dataitem_like_customer_zipcode"

 fgltype ="char" egltype ="unicode(5)" size ="5" />

 <column name ="phone"

dataitem ="dataitem_like_customer_phone"

 fgltype ="char" egltype ="unicode(18)" size ="18" />

 </table>

 <table name ="items" egltype ="rec_like_items">

 <column name ="item_num"

dataitem ="dataitem_like_items_item_num"

 fgltype ="smallint" egltype ="smallint" />

 <column name ="order_num"

dataitem ="dataitem_like_items_order_num"

 fgltype ="int" egltype ="int" />

 <column name ="stock_num"

dataitem ="dataitem_like_items_stock_num"

 fgltype ="smallint" egltype ="smallint" />

 <column name ="manu_code"

dataitem ="dataitem_like_items_manu_code"

 fgltype ="char" egltype ="unicode(3)" size ="3" />

 <column name ="quantity"

dataitem ="dataitem_like_items_quantity"

 fgltype ="smallint" egltype ="smallint" />

 <column name ="total_price"

dataitem ="dataitem_like_items_total_price"

 fgltype ="money" egltype ="money(8,2)"

scale ="2" precision ="8" />

 </table>

 <table name ="manufact" egltype ="rec_like_manufact">

 <column name ="manu_code"

dataitem ="dataitem_like_manufact_manu_code"

 fgltype ="char" egltype ="unicode(3)" size ="3" />

 <column name ="manu_name"

dataitem ="dataitem_like_manufact_manu_name"

 fgltype ="char" egltype ="unicode(15)" size ="15" />

 <column name ="lead_time"

dataitem ="dataitem_like_manufact_lead_time"

 fgltype ="interval day(3) to day"

egltype ="interval("ddd")" precision ="3"

start ="day" end ="day" />

 </table>

 <table name ="msgs" egltype ="rec_like_msgs">

 <column name ="lang" dataitem ="dataitem_like_msgs_lang"

 fgltype ="char" egltype ="unicode(32)" size ="32" />

 <column name ="number" dataitem ="dataitem_like_msgs_number"

 fgltype ="int" egltype ="int" />

 <column name ="message" dataitem ="dataitem_like_msgs_message"

 fgltype ="nchar" egltype ="unicode(255)" size ="255" />

 </table>

 <table name ="orders" egltype ="rec_like_orders">

 <column name ="order_num"

dataitem ="dataitem_like_orders_order_num"

 fgltype ="serial" egltype ="int" />

 <column name ="order_date"

dataitem ="dataitem_like_orders_order_date"

 fgltype ="date" egltype ="date" />

 <column name ="customer_num"

dataitem ="dataitem_like_orders_customer_num"

Appendix E. Manifest File Examples E-3

fgltype ="int" egltype ="int" />

 <column name ="ship_instruct"

dataitem ="dataitem_like_orders_ship_instruct"

 fgltype ="char" egltype ="unicode(40)" size ="40" />

 <column name ="backlog"

 dataitem ="dataitem_like_orders_backlog"

 fgltype ="char" egltype ="unicode(1)" size ="1" />

 <column name ="po_num"

 dataitem ="dataitem_like_orders_po_num"

 fgltype ="char" egltype ="unicode(10)" size ="10" />

 <column name ="ship_date"

 dataitem ="dataitem_like_orders_ship_date"

 fgltype ="date" egltype ="date" />

 <column name ="ship_weight"

dataitem ="dataitem_like_orders_ship_weight"

 fgltype ="decimal" egltype ="decimal(8,2)" scale ="2"

precision ="8" />

 <column name ="ship_charge"

dataitem ="dataitem_like_orders_ship_charge"

 fgltype ="money" egltype ="money(6,2)" scale ="2"

precision ="6" />

 <column name ="paid_date"

dataitem ="dataitem_like_orders_paid_date"

 fgltype ="date" egltype ="date" />

 </table>

 <table name ="state" egltype ="rec_like_state">

 <column name ="code" dataitem ="dataitem_like_state_code"

fgltype ="char" egltype ="unicode(2)" size ="2" />

 <column name ="sname" dataitem ="dataitem_like_state_sname"

fgltype ="char" egltype ="unicode(15)" size ="15" />

 </table>

 <table name ="stock" egltype ="rec_like_stock">

 <column name ="stock_num"

dataitem ="dataitem_like_stock_stock_num"

 fgltype ="smallint" egltype ="smallint" />

 <column name ="manu_code"

dataitem ="dataitem_like_stock_manu_code"

 fgltype ="char" egltype ="unicode(3)" size ="3" />

 <column name ="description"

dataitem ="dataitem_like_stock_description"

 fgltype ="char" egltype ="unicode(15)" size ="15" />

 <column name ="unit_price"

dataitem ="dataitem_like_stock_unit_price"

 fgltype ="money" egltype ="money(6,2)" scale ="2"

precision ="6" />

 <column name ="unit"

dataitem ="dataitem_like_stock_unit"

fgltype ="char" egltype ="unicode(4)" size ="4" />

 <column name ="unit_descr"

dataitem ="dataitem_like_stock_unit_descr"

 fgltype ="char" egltype ="unicode(15)" size ="15" />

 </table>

 <table name ="syscolval" egltype ="rec_like_syscolval">

 <column name ="tabname"

dataitem ="dataitem_like_syscolval_tabname"

 fgltype ="char" egltype ="unicode(18)" size ="18" />

 <column name ="colname"

dataitem ="dataitem_like_syscolval_colname"

 fgltype ="char" egltype ="unicode(18)" size ="18" />

 <column name ="attrname"

dataitem ="dataitem_like_syscolval_attrname"

 fgltype ="char" egltype ="unicode(10)" size ="10" />

 <column name ="attrval"

dataitem ="dataitem_like_syscolval_attrval"

E-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype ="char" egltype ="unicode(64)" size ="64" />

 </table>

 </package>

</manifest>

Shared Library or Application Project Manifest File Example

This example shows a shared library manifest file. Shared library and application

projects have identical manifest files, with the following exception:

v in the shared library project manifest file, the attribute type equals library.

v in the application project manifest file, the attribute type equals application.
<?xml version="1.0" encoding="utf-8"?>

<!--

 Manifest file generated by I4GL to EGL Conversion Utility

 Project Name :I4gldemoSharedLibrary

 Generated on :Fri Jan 28 14:01:36 CST 2005

-->

<!-- DTD for Manifest file -->

<!DOCTYPE manifest [

<!ELEMENT manifest (package)>

 <!ATTLIST manifest project CDATA #REQUIRED>

 <!ATTLIST manifest type CDATA #FIXED "library">

<!ELEMENT package (rectype*, variables*,

function*,cfunc*,cursor*,

preparedStatements*)>

 <!ATTLIST package name CDATA #REQUIRED>

<!ELEMENT function (parameter*,return*)>

 <!ATTLIST function name CDATA #REQUIRED>

 <!ATTLIST function package CDATA #IMPLIED>

 <!ATTLIST function library CDATA #REQUIRED>

 <!ATTLIST function type CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>

 <!ATTLIST parameter name CDATA #REQUIRED>

 <!ATTLIST parameter egltype CDATA #REQUIRED>

 <!ATTLIST parameter fgltype CDATA #IMPLIED>

 <!ATTLIST parameter size CDATA #IMPLIED>

 <!ATTLIST parameter precision CDATA #IMPLIED>

 <!ATTLIST parameter scale CDATA #IMPLIED>

 <!ATTLIST parameter start CDATA #IMPLIED>

 <!ATTLIST parameter end CDATA #IMPLIED>

 <!ATTLIST parameter isrectype (t|f) "f">

 <!ATTLIST parameter library CDATA #REQUIRED>

<!ELEMENT return EMPTY>

 <!ATTLIST return name CDATA #REQUIRED>

 <!ATTLIST return egltype CDATA #REQUIRED>

 <!ATTLIST return fgltype CDATA #IMPLIED>

 <!ATTLIST return size CDATA #IMPLIED>

 <!ATTLIST return precision CDATA #IMPLIED>

 <!ATTLIST return scale CDATA #IMPLIED>

 <!ATTLIST return start CDATA #IMPLIED>

 <!ATTLIST return end CDATA #IMPLIED>

 <!ATTLIST return isrectype (t|f) "f" >

 <!ATTLIST return library CDATA #REQUIRED>

<!ELEMENT cfunc (dependentPackage*) >

 <!ATTLIST cfunc name CDATA #REQUIRED>

 <!ATTLIST cfunc package CDATA #REQUIRED>

 <!ATTLIST cfunc library CDATA #REQUIRED>

 <!ATTLIST cfunc argcount CDATA #REQUIRED>

 <!ATTLIST cfunc retcount CDATA #REQUIRED>

<!ELEMENT dependentPackage EMPTY>

 <!ATTLIST dependentPackage package CDATA #REQUIRED>

<!ELEMENT cursor EMPTY>

 <!ATTLIST cursor name CDATA #REQUIRED>

 <!ATTLIST cursor ishold (t|f) "f" >

Appendix E. Manifest File Examples E-5

<!ATTLIST cursor isscrolling (t|f) "f" >

 <!ATTLIST cursor library CDATA #REQUIRED>

<!ELEMENT variables (variable*)>

<!ELEMENT variable EMPTY>

 <!ATTLIST variable name CDATA #REQUIRED>

 <!ATTLIST variable egltype CDATA #REQUIRED>

 <!ATTLIST variable fgltype CDATA #IMPLIED>

 <!ATTLIST variable size CDATA #IMPLIED>

 <!ATTLIST variable precision CDATA #IMPLIED>

 <!ATTLIST variable scale CDATA #IMPLIED>

 <!ATTLIST variable start CDATA #IMPLIED>

 <!ATTLIST variable end CDATA #IMPLIED>

 <!ATTLIST variable isrectype (t|f) "f" >

 <!ATTLIST variable library CDATA #REQUIRED>

<!ELEMENT rectype (field*)>

 <!ATTLIST rectype name CDATA #REQUIRED>

 <!ATTLIST rectype library CDATA #REQUIRED>

<!ELEMENT field EMPTY>

 <!ATTLIST field name CDATA #REQUIRED>

 <!ATTLIST field egltype CDATA #REQUIRED>

 <!ATTLIST field fgltype CDATA #IMPLIED>

 <!ATTLIST field size CDATA #IMPLIED>

 <!ATTLIST field precision CDATA #IMPLIED>

 <!ATTLIST field scale CDATA #IMPLIED>

 <!ATTLIST field start CDATA #IMPLIED>

 <!ATTLIST field end CDATA #IMPLIED>

 <!ATTLIST field isrectype (t|f) "f" >

 <!ATTLIST field library CDATA #REQUIRED>

<!ELEMENT preparedStatements (statement*)>

<!ELEMENT statement EMPTY>

 <!ATTLIST statement name CDATA #REQUIRED>

 <!ATTLIST statement library CDATA #REQUIRED>

]>

<manifest project="I4gldemoSharedLibrary" type="library" >

<package name="I4gldemoSharedLibrary">

<!-- Record Declarations-->

<rectype name="recordtype_d4_orders_invoice_x_invoice"

library="d4_orders">

 <field name="order_num" library="d4_orders" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="order_date" library="d4_orders" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="ship_instruct" library="d4_orders"

egltype="unicode(40)"

 fgltype="char" size="40" isrectype="f" />

 <field name="backlog" library="d4_orders" egltype="unicode(1)"

 fgltype="char" size="1" isrectype="f" />

 <field name="po_num" library="d4_orders" egltype="unicode(10)"

 fgltype="char" size="10" isrectype="f" />

 <field name="ship_date" library="d4_orders" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="ship_weight" library="d4_orders"

egltype="decimal(8,2)" fgltype="decimal" precision="8"

scale="2" isrectype="f" />

 <field name="ship_charge" library="d4_orders"

egltype="money(6,2)" fgltype="money" precision="6"

scale="2" isrectype="f" />

 <field name="item_num" library="d4_orders" egltype="smallint"

 fgltype="smallint" isrectype="f" />

 <field name="stock_num" library="d4_orders" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="manu_code" library="d4_orders" egltype="unicode(3)"

 fgltype="char" size="3" isrectype="f" />

 <field name="quantity" library="d4_orders" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="total_price" library="d4_orders" egltype="money(8,2)"

E-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype="money" precision="8" scale="2" isrectype="f" />

 <field name="description" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="unit_price" library="d4_orders" egltype="money(6,2)"

fgltype="money" precision="6" scale="2" isrectype="f" />

 <field name="unit" library="d4_orders" egltype="unicode(4)"

fgltype="char" size="4" isrectype="f" />

 <field name="unit_descr" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="manu_name" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

</rectype>

<rectype name="recordtype_d4_orders_x" library="d4_orders">

 <field name="order_num" library="d4_orders" egltype="int"

fgltype="serial" isrectype="f" />

 <field name="order_date" library="d4_orders" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="ship_instruct" library="d4_orders"

egltype="unicode(40)" fgltype="char" size="40" isrectype="f" />

 <field name="backlog" library="d4_orders" egltype="unicode(1)"

 fgltype="char" size="1" isrectype="f" />

 <field name="po_num" library="d4_orders" egltype="unicode(10)"

 fgltype="char" size="10" isrectype="f" />

 <field name="ship_date" library="d4_orders" egltype="date"

fgltype="date" isrectype="f" />

 <field name="ship_weight" library="d4_orders" egltype="decimal(8,2)"

fgltype="decimal" precision="8" scale="2" isrectype="f" />

 <field name="ship_charge" library="d4_orders" egltype="money(6,2)"

fgltype="money" precision="6" scale="2" isrectype="f" />

 <field name="item_num" library="d4_orders" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="stock_num" library="d4_orders" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="manu_code" library="d4_orders" egltype="unicode(3)"

 fgltype="char" size="3" isrectype="f" />

 <field name="quantity" library="d4_orders" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="total_price" library="d4_orders" egltype="money(8,2)"

fgltype="money" precision="8" scale="2" isrectype="f" />

 <field name="description" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="unit_price" library="d4_orders" egltype="money(6,2)"

fgltype="money" precision="6" scale="2" isrectype="f" />

 <field name="unit" library="d4_orders" egltype="unicode(4)"

fgltype="char" size="4" isrectype="f" />

 <field name="unit_descr" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="manu_name" library="d4_orders" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

</rectype>

<rectype name="recordtype_d4_report_print_ar_r" library="d4_report">

 <field name="customer_num" library="d4_report" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="fname" library="d4_report" egltype="unicode(15)"

 fgltype="char" size="15" isrectype="f" />

 <field name="lname" library="d4_report" egltype="unicode(15)"

 fgltype="char" size="15" isrectype="f" />

 <field name="company" library="d4_report" egltype="unicode(20)"

 fgltype="char" size="20" isrectype="f" />

 <field name="order_num" library="d4_report" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="order_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="ship_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="paid_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

Appendix E. Manifest File Examples E-7

<field name="total_price" library="d4_report" egltype="money(8,2)"

fgltype="money" precision="8" scale="2" isrectype="f" />

</rectype>

<rectype name="recordtype_d4_report_r" library="d4_report">

 <field name="customer_num" library="d4_report" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="fname" library="d4_report" egltype="unicode(15)"

 fgltype="char" size="15" isrectype="f" />

 <field name="lname" library="d4_report" egltype="unicode(15)"

 fgltype="char" size="15" isrectype="f" />

 <field name="company" library="d4_report" egltype="unicode(20)"

 fgltype="char" size="20" isrectype="f" />

 <field name="order_num" library="d4_report" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="order_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="ship_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="paid_date" library="d4_report" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="total_price" library="d4_report" egltype="money(8,2)"

fgltype="money" precision="8" scale="2" isrectype="f" />

</rectype>

<rectype name="recordtype_p_items" library="d4_globals">

 <field name="item_num" library="d4_globals" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="stock_num" library="d4_globals" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="manu_code" library="d4_globals" egltype="unicode(3)"

fgltype="char" size="3" isrectype="f" />

 <field name="description" library="d4_globals" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="quantity" library="d4_globals" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="unit_price" library="d4_globals" egltype="money(6,2)"

fgltype="money" precision="6" scale="2" isrectype="f" />

 <field name="total_price" library="d4_globals" egltype="money(8,2)"

fgltype="money" precision="8" scale="2" isrectype="f" />

</rectype>

<rectype name="recordtype_p_orders" library="d4_globals">

 <field name="order_num" library="d4_globals" egltype="int"

 fgltype="serial" isrectype="f" />

 <field name="order_date" library="d4_globals" egltype="date"

 fgltype="date" isrectype="f" />

 <field name="po_num" library="d4_globals" egltype="unicode(10)"

 fgltype="char" size="10" isrectype="f" />

 <field name="ship_instruct" library="d4_globals"

egltype="unicode(40)" fgltype="char" size="40" isrectype="f" />

</rectype>

<rectype name="recordtype_p_stock" library="d4_globals">

 <field name="stock_num" library="d4_globals" egltype="smallint"

fgltype="smallint" isrectype="f" />

 <field name="manu_code" library="d4_globals" egltype="unicode(3)"

fgltype="char" size="3" isrectype="f" />

 <field name="manu_name" library="d4_globals" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="description" library="d4_globals" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

 <field name="unit_price" library="d4_globals" egltype="money(6,2)"

fgltype="money" precision="6" scale="2" isrectype="f" />

 <field name="unit_descr" library="d4_globals" egltype="unicode(15)"

fgltype="char" size="15" isrectype="f" />

</rectype>

<!-- Global Variable Declarations-->

<variables>

 <variable name="p_customer" library="d4_globals"

E-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

egltype="rec_like_customer" isrectype="t" />

 <variable name="p_items" library="d4_globals"

 egltype="recordtype_p_items" isrectype="t" />

 <variable name="p_orders" library="d4_globals"

 egltype="recordtype_p_orders" isrectype="t" />

 <variable name="p_state" library="d4_globals"

egltype="rec_like_state" isrectype="t" />

 <variable name="p_stock" library="d4_globals"

egltype="recordtype_p_stock" isrectype="t" />

 <variable name="print_option" library="d4_globals"

egltype="UNICODE(1)" fgltype="CHAR(1)" size="1"

isrectype="f" />

 <variable name="state_cnt" library="d4_globals" egltype="INT"

 fgltype="INTEGER" isrectype="f" />

 <variable name="stock_cnt" library="d4_globals" egltype="INT"

 fgltype="INTEGER" isrectype="f" />

</variables>

<!-- Function Declarations-->

<function name="add_customer" package="i4gldemo" library="d4_cust"

 type="void" >

 <parameter name="repeat" library="d4_cust" egltype="INT"

fgltype="INTEGER" size="" start="" end="" precision="" scale=""

isrectype="f" />

</function>

<function name="add_order" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="add_stock" package="i4gldemo" library="d4_stock"

type="void" >

</function>

<function name="bang" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="clear_menu" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="customer" package="i4gldemo" library="d4_cust"

type="void" >

</function>

<function name="customer_help" package="i4gldemo" l

ibrary="d4_cust"

type="void" >

</function>

<function name="delete_customer" package="i4gldemo"

library="d4_cust" type="void" >

</function>

<function name="delete_order" package="i4gldemo"

library="d4_orders" type="void" >

</function>

<function name="delete_stock" package="i4gldemo"

library="d4_stock"

type="void" > </function>

<function name="demo" package="i4gldemo"

library="d4_demo" type="void" >

</function>

Appendix E. Manifest File Examples E-9

<function name="get_item" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="get_order" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="get_states" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="get_stock" package="i4gldemo" library="d4_orders"

 type="void" >

 <return name="stock_num" egltype="smallint"

library="d4_globals" fgltype="smallint" size="" start="" end=""

precision="" scale="" isrectype="f" />

 <return name="manu_code" egltype="unicode(3)"

library="d4_globals" fgltype="char" size="3" start=""

end="" precision="" scale="" isrectype="f" />

 <return name="description" egltype="unicode(15)"

library="d4_globals" fgltype="char" size="15" start=""

end="" precision=""scale="" isrectype="f" />

 <return name="unit_price" egltype="money(6,2)"

library="d4_globals" fgltype="money" size="" start=""

end="" precision="6" scale="2" isrectype="f" />

</function>

<function name="get_stocks" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="input_cust" package="i4gldemo" library="d4_cust"

type="Int" >

 <return name="" egltype="Int" library="" fgltype="Int" size="1"

start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />

</function>

<function name="insert_items" package="i4gldemo" library="d4_orders"

type="Int" >

 <return name="" egltype="Int" library="" fgltype="Int" size="1"

start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />

</function>

<function name="invoice" package="i4gldemo" library="d4_orders"

type="void" >

 <parameter name="file_name" library="d4_orders"

egltype="UNICODE(20)" fgltype="CHAR(20)" size="20" start=""

end="" precision="" scale="" isrectype="f" />

</function>

<function name="item_total" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="MAIN" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="mess" package="i4gldemo" library="d4_main"

type="void" > <parameter name="str" library="d4_main"

egltype="UNICODE(80)" fgltype="CHAR(80)" size="80" start=""

end="" precision="" scale="" isrectype="f" />

 <parameter name="mrow" library="d4_main" egltype="SMALLINT"

fgltype="SMALLINT" size="" start="" end="" precision=""

scale="" isrectype="f" />

E-10 IBM Informix 4GL to EGL Conversion Utility User’s Guide

</function>

<function name="order_total" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="orders" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="print_ar" package="i4gldemo" library="d4_report"

type="void" >

</function>

<function name="print_backlog" package="i4gldemo" library="d4_report"

 type="void" >

</function>

<function name="print_labels" package="i4gldemo" library="d4_report"

 type="void" >

</function>

<function name="print_stock" package="i4gldemo" library="d4_report"

type="void" >

</function>

<function name="query_customer" package="i4gldemo" library="d4_cust"

type="Int" >

 <parameter name="mrow" library="d4_cust" egltype="SMALLINT"

fgltype="SMALLINT" size="" start="" end="" precision="" scale=""

isrectype="f" />

 <return name="" egltype="Int" library="" fgltype="Int" size="1"

start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />

</function>

<function name="query_stock" package="i4gldemo" library="d4_stock"

type="void" >

</function>

<function name="renum_items" package="i4gldemo" library="d4_orders"

type="void" >

</function>

<function name="REPORT" package="i4gldemo" library="d4_report"

type="void" >

 <parameter name="r" library="d4_report" egltype="recordtype_d4_report_r"

fgltype="RECORD customer_num LIKE customer.customer_num, fname LIKE

 customer.fname, lname LIKE customer.lname,

company LIKE customer.company, order_num LIKE orders.order_num,

order_date LIKE orders.order_date, ship_date LIKE orders.ship_date,

paid_date LIKE orders.paid_date,

total_price LIKE items.total_price END RECORD" size="" start=""

end="" precision="" scale="" isrectype="t" />

</function>

<function name="reports" package="i4gldemo" library="d4_report"

type="void" >

</function>

<function name="ring_menu" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="statehelp" package="i4gldemo" library="d4_cust"

type="void" >

</function>

Appendix E. Manifest File Examples E-11

<function name="stock" package="i4gldemo" library="d4_stock"

type="void" >

</function>

<function name="unring_menu" package="i4gldemo" library="d4_main"

type="void" >

</function>

<function name="update_customer" package="i4gldemo"

library="d4_cust" type="void" > </function>

<function name="update_options" package="i4gldemo" library="d4_report"

 type="void" >

</function>

<function name="update_order" package="i4gldemo" library="d4_orders"

 type="void" >

</function>

<function name="update_stock" package="i4gldemo" library="d4_stock"

type="void" >

</function>

</package>

<forms>

 <form name="custForm.egl" package="i4gldemo.forms" />

 <form name="custcurForm.egl" package="i4gldemo.forms" />

 <form name="custformForm.egl" package="i4gldemo.forms" />

 <form name="customerForm.egl" package="i4gldemo.forms" />

 <form name="ordcurForm.egl" package="i4gldemo.forms" />

 <form name="orderForm.egl" package="i4gldemo.forms" />

 <form name="orderformForm.egl" package="i4gldemo.forms" />

 <form name="p_ordcurForm.egl" package="i4gldemo.forms" />

 <form name="state_listForm.egl" package="i4gldemo.forms" />

 <form name="stock1Form.egl" package="i4gldemo.forms" />

 <form name="stock_selForm.egl" package="i4gldemo.forms" />

</forms>

</manifest>

E-12 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix F. DTD Examples

In This Appendix

This appendix provides examples of the DTD used for configuration and manifest

files for Database Schema Extraction, Shared Library, and Application projects.

DTD Example Overview

The DTD used in these examples is specific to the Informix 4GL to EGL

Conversion Utility Version 6.0.0.1. These examples are located in the following

directory: plugininstallation/etc/dtd.

DTD examples are provided for the following:

v Configuration file

– Schema

– Library

– Application
v Manifest file

– Schema

– Library

– Application

Configuration File

Database Schema Extraction Project

In the following example, the Artifacts Directory specified by element artifactsdir

is optional. If no value is provided, the directory will default to the

egldir/ConversionArtifacts directory. In addition, the client_locale and db_locale

attributes are Informix-specific locales which default to English and en_US.8859-1.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT conversion (rootdir,dbconnection*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

 <!ATTLIST conversion type CDATA #FIXED "schema" >

<!ELEMENT rootdir (egldir,artifactsdir?)>

<!ELEMENT egldir (#PCDATA)>

<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT dbconnection (database,server,host,port,user,password)+>

 <!ATTLIST dbconnection extractSystemTables (yes|no) "no" >

 <!ATTLIST dbconnection client_locale CDATA #IMPLIED >

 <!ATTLIST dbconnection db_locale CDATA #IMPLIED >

<!ELEMENT database (#PCDATA)>

<!ELEMENT server (#PCDATA)>

<!ELEMENT host (#PCDATA)>

<!ELEMENT port (#PCDATA)>

<!ELEMENT user (#PCDATA)>

<!ELEMENT password ANY>

© Copyright IBM Corp. 2005 F-1

Shared Library Project

In the following example, the locale attribute used in the conversion” and

“msgfiles” elements both default to en_US.8859-1. If Library Project is dependent

on database schema then “defaultserver” attribute should contain the name of the

server as specified in dependent manifest file given in element “manifestfiles” of

type “schema”

 <?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT conversion (rootdir, manifestfiles*, fglfiles?,formfiles?,

msgfiles*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

 <!ATTLIST conversion type CDATA #FIXED "library" >

 <!ATTLIST conversion locale CDATA #IMPLIED >

 <!ATTLIST conversion cursor (local | global) #IMPLIED>

 <!ATTLIST conversion defaultserver CDATA #IMPLIED>

<!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>

<!ELEMENT fgldir (#PCDATA)>

<!ELEMENT egldir (#PCDATA)>

<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT manifestfiles (file)+>

 <!ATTLIST manifestfiles type (schema | library) #REQUIRED>

<!ELEMENT fglfiles (file)+>

<!ELEMENT formfiles (file)+>

<!ELEMENT fontconfigfile (file)>

<!ELEMENT file (#PCDATA)>

<!ELEMENT msgfiles (file)+>

 <!ATTLIST msgfiles locale CDATA #IMPLIED >

Application Project

This DTD is identical to Library project, except for value of attribute “type” under

element “conversion”.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT conversion (rootdir, manifestfiles*, fglfiles?, formfiles?

 msgfiles*)>

 <!ATTLIST conversion project CDATA #REQUIRED >

<!ATTLIST conversion type CDATA #FIXED "application" >

 <!ATTLIST conversion locale CDATA #IMPLIED >

 <!ATTLIST conversion cursor (local | global) #IMPLIED>

 <!ATTLIST conversion defaultserver CDATA #IMPLIED>

<!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>

<!ELEMENT fgldir (#PCDATA)>

<!ELEMENT egldir (#PCDATA)>

<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT manifestfiles (file)+>

 <!ATTLIST manifestfiles type (schema | library) #REQUIRED>

<!ELEMENT fglfiles (file)+>

<!ELEMENT formfiles (file)+>

<!ELEMENT fontconfigfile (file)>

<!ELEMENT file (#PCDATA)>

<!ELEMENT msgfiles (file)+>

 <!ATTLIST msgfiles locale CDATA #IMPLIED >

F-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Manifest File

Database Schema Extraction Project

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT manifest (package*)>

 <!ATTLIST manifest project CDATA #REQUIRED >

 <!ATTLIST manifest type CDATA #FIXED "schema">

 <!ATTLIST manifest version CDATA #REQUIRED >

<!ELEMENT package (table+)>

 <!ATTLIST package

 name CDATA #REQUIRED

 server CDATA #REQUIRED

 database CDATA #REQUIRED

 mode (ANSI) #IMPLIED>

<!ELEMENT table (column+)>

 <!ATTLIST table

 name CDATA #REQUIRED

 egltype CDATA #REQUIRED

 owner CDATA #IMPLIED>

<!ELEMENT column EMPTY>

 <!ATTLIST column

 name CDATA #REQUIRED

 dataitem CDATA #REQUIRED

 fgltype CDATA #REQUIRED

 egltype CDATA #REQUIRED

 size CDATA #IMPLIED

 start CDATA #IMPLIED

 end CDATA #IMPLIED

 precision CDATA #IMPLIED

 scale CDATA #IMPLIED>

Library or Application Project

The DTD for a Library and an Application project are identical.

 <?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT manifest (package,forms*)>

 <!ATTLIST manifest project CDATA #REQUIRED>

 <!ATTLIST manifest type CDATA #FIXED "library">

<!ELEMENT package (rectype*, variables* ,function*,cfunc*,

cursor*,preparedStatements*)>

 <!ATTLIST package name CDATA #REQUIRED>

<!ELEMENT function (parameter*,return*)>

 <!ATTLIST function name CDATA #REQUIRED>

 <!ATTLIST function library CDATA #REQUIRED>

 <!ATTLIST function type CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>

 <!ATTLIST parameter name CDATA #REQUIRED>

 <!ATTLIST parameter egltype CDATA #REQUIRED>

 <!ATTLIST parameter fgltype CDATA #IMPLIED>

 <!ATTLIST parameter size CDATA #IMPLIED>

 <!ATTLIST parameter precision CDATA #IMPLIED>

 <!ATTLIST parameter scale CDATA #IMPLIED>

 <!ATTLIST parameter start CDATA #IMPLIED>

 <!ATTLIST parameter end CDATA #IMPLIED>

 <!ATTLIST parameter isrectype (t|f) "f">

 <!ATTLIST parameter library CDATA #REQUIRED>

Appendix F. DTD Examples F-3

<!ELEMENT return EMPTY>

 <!ATTLIST return name CDATA #REQUIRED>

 <!ATTLIST return egltype CDATA #REQUIRED>

 <!ATTLIST return fgltype CDATA #IMPLIED>

 <!ATTLIST return size CDATA #IMPLIED>

 <!ATTLIST return precision CDATA #IMPLIED>

 <!ATTLIST return scale CDATA #IMPLIED>

 <!ATTLIST return start CDATA #IMPLIED>

 <!ATTLIST return end CDATA #IMPLIED>

 <!ATTLIST return isrectype (t|f) "f" >

 <!ATTLIST return library CDATA #REQUIRED>

<!ELEMENT cfunc EMPTY>

 <!ATTLIST cfunc name CDATA #REQUIRED>

 <!ATTLIST cfunc library CDATA #REQUIRED>

 <!ATTLIST cfunc argcount CDATA #REQUIRED>

 <!ATTLIST cfunc retcount CDATA #REQUIRED>

<!ELEMENT cursor EMPTY>

 <!ATTLIST cursor name CDATA #REQUIRED>

 <!ATTLIST cursor ishold (t|f) "f" >

 <!ATTLIST cursor isscrolling (t|f) "f" >

 <!ATTLIST cursor library CDATA #REQUIRED>

<!ELEMENT variables (variable*)>

<!ELEMENT variable EMPTY>

 <!ATTLIST variable name CDATA #REQUIRED>

 <!ATTLIST variable egltype CDATA #REQUIRED>

 <!ATTLIST variable fgltype CDATA #IMPLIED>

 <!ATTLIST variable size CDATA #IMPLIED>

 <!ATTLIST variable precision CDATA #IMPLIED>

 <!ATTLIST variable scale CDATA #IMPLIED>

 <!ATTLIST variable start CDATA #IMPLIED>

 <!ATTLIST variable end CDATA #IMPLIED>

 <!ATTLIST variable isrectype (t|f) "f" >

 <!ATTLIST variable library CDATA #REQUIRED>

<!ELEMENT rectype (field*)>

 <!ATTLIST rectype name CDATA #REQUIRED>

 <!ATTLIST rectype library CDATA #REQUIRED>

<!ELEMENT field EMPTY>

 <!ATTLIST field name CDATA #REQUIRED>

 <!ATTLIST field egltype CDATA #REQUIRED>

 <!ATTLIST field fgltype CDATA #IMPLIED>

 <!ATTLIST field size CDATA #IMPLIED>

 <!ATTLIST field precision CDATA #IMPLIED>

 <!ATTLIST field scale CDATA #IMPLIED>

 <!ATTLIST field start CDATA #IMPLIED>

 <!ATTLIST field end CDATA #IMPLIED>

 <!ATTLIST field isrectype (t|f) "f" >

 <!ATTLIST field library CDATA #REQUIRED>

<!ELEMENT preparedStatements (statement*)>

<!ELEMENT statement EMPTY>

 <!ATTLIST statement name CDATA #REQUIRED>

 <!ATTLIST statement library CDATA #REQUIRED>

<!ELEMENT forms (form*)>

F-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<!ELEMENT form EMPTY>

 <!ATTLIST form name CDATA #REQUIRED>

 <!ATTLIST form package CDATA #REQUIRED>

Appendix F. DTD Examples F-5

F-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix G. Conversion Log Examples

In This Appendix

This appendix provides examples of conversion logs in .txt format.

Application Project: PASSED Example

--

 i4gldemo Conversion Log

--

Conversion Status:

Project Status : PASSED

Conversion date : Wed Feb 02 22:22:53 CST 2005

User : jdoe

Host : boom

OS version : Windows XP

Project Details:

Project Name : i4gldemo

Conversion Type : application

4GL root directory : C:\i4gl\i4gldemo

EGL destination directory : C:\workspace\i4gldemo

Conversion artifacts directory : C:\temp\i4gldemo\ConversionArtifacts

Configuration file : C:\i4gl\config\i4gldemoConfig.xml

Default Informix server instance: myserver

Informix cursor scope : local

Conversion Artifacts:

Manifest File Generated : C:\temp\i4gldemo\ConversionArtifacts\manifest\

i4gldemoApplicationManifest.xml

EGL Build descriptor file: C:\temp\i4gldemo\i4gldemo\EGLSource\i4gldemo.eglbld

I4GL Source File Conversion Summary:

--

Total number of I4GL files given: 19

Total number of files converted successfully: 19

d4_cust.4gl -> PASSED

d4_demo.4gl -> PASSED

d4_globals.4gl -> PASSED

d4_load.4gl -> PASSED

d4_main.4gl -> PASSED

d4_orders.4gl -> PASSED

d4_report.4gl -> PASSED

d4_stock.4gl -> PASSED

cust.per -> PASSED

custcur.per -> PASSED

custform.per -> PASSED

customer.per -> PASSED

ordcur.per -> PASSED

order.per -> PASSED

orderform.per -> PASSED

p_ordcur.per -> PASSED

state_list.per -> PASSED

stock1.per -> PASSED

stock_sel.per -> PASSED

© Copyright IBM Corp. 2005 G-1

Source File Conversion Details:

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_cust.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_cust.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_demo.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_demo.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_globals.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_globals.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_load.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_load.egl

 : C:\workspace\i4gldemo\d4_load_program.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_main.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_main.egl

 : C:\workspace\i4gldemo\d4_main_program.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_orders.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_orders.egl

 : C:\workspace\i4gldemo\r_invoice_handler.egl

 : C:\workspace\i4gldemo\r_invoice_XML.jrxml

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_report.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_report.egl

 : C:\workspace\i4gldemo\labels_report_handler.egl

 : C:\workspace\i4gldemo\labels_report_XML.jrxml

 : C:\workspace\i4gldemo\ar_report_handler.egl

 : C:\workspace\i4gldemo\ar_report_XML.jrxml

Statu : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_stock.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_stock.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\cust.per

EGL source file generated : C:\workspace\i4gldemo\forms\custForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\custcur.per

EGL source file generated : C:\workspace\i4gldemo\forms\custcurForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\custform.per

EGL source file generated : C:\workspace\i4gldemo\forms\custformForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\customer.per

EGL source file generated : C:\workspace\i4gldemo\forms\customerForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\ordcur.per

EGL source file generated : C:\workspace\i4gldemo\forms\ordcurForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\order.per

EGL source file generated : C:\workspace\i4gldemo\forms\orderForm.egl

Status : PASSED

G-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\orderform.per

EGL source file generated : C:\workspace\i4gldemo\forms\orderformForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\p_ordcur.per

EGL source file generated : C:\workspace\i4gldemo\forms\p_ordcurForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\state_list.per

EGL source file generated : C:\workspace\i4gldemo\forms\state_listForm.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\stock1.per

EGL source file generated : C:\workspace\i4gldemo\forms\stock1Form.egl

Status : PASSED

4GL source file given : C:\i4gl\i4gldemo\fgl\forms\stock_sel.per

EGL source file generated : C:\workspace\i4gldemo\forms\stock_selForm.egl

Status : PASSED

Application Project: FAILED Example

--

 i4gldemo Conversion Log

--

Conversion Status:

Project Status : FAILED

Conversion date : Wed Feb 02 22:22:53 CST 2005

User : jdoe

Host : boom

OS version : Windows XP

Project Details:

Project Name : i4gldemo

Conversion Type : application

4GL root directory : C:\i4gl\i4gldemo

EGL destination directory : C:\workspace\i4gldemo

Conversion artifacts directory : C:\temp\i4gldemo\ConversionArtifacts

Configuration file : C:\i4gl\config\i4gldemoConfig.xml

Default Informix server instance : myserver

Informix cursor scope : local

I4GL Source File Conversion Summary:

--

Total number of I4GL files given: 1

Total number of files converted successfully: 0

d4_cust.4gl -> FAILED

Source File Conversion Details:

4GL source file given : C:\i4gl\i4gldemo\fgl\d4_cust.4gl

EGL source file generated : C:\workspace\i4gldemo\d4_cust.egl

Status : FAILED

Database Schema Extraction Project: FAILED Example

--

 Stores7 Conversion Log

--

Appendix G. Conversion Log Examples G-3

Conversion Status :

Project Status : FAILED

Conversion date : Thu Feb 03 11:25:33 CST 2005

User : jdoe

Host : boom

OS version : Windows XP

Project Details :

Project Name : Stores7

Conversion Type : schema

EGL destination directory : C:\workspace\stores7

Conversion artifacts directory : C:\workspace\stores7\

 ConversionArtifacts

Configuration file : C:\workspace\stores7\

 conversionArtifacts\config\Stores7SchemaConfig.xml

Database Connection details:

 Database : stores7

 Server : myserver

 Host : boom.antartica.world.com

 Port : 2005

 User : jdoe

 CLIENT_LOCALE : en_us.8859-1

 DB_LOCALE : en_us.8859-1

Exceptions:

ERROR : Server : "myserver" Database : "stores7"

Informix JDBC Exception :

java.sql.SQLException: User (com.informix.asf.IfxASFRemoteException jdoe)’s

password is not correct for the database server.

G-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix H. EGL Build Descriptor Example

In This Appendix

This appendix provides examples of EGL build descriptor files generated by the

Conversion Utility.

EGL Build Descriptor Overview

The Conversion Utility generates a build descriptor file for each converted project.

The generated file provides values for only the properties that are relevant to

converted I4GL files.

Database Schema Extraction Project

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE EGL PUBLIC "-//IBM Corporation, Inc.//DTD EGL Build Parts

 6.0//EN" "">

<EGL>

<BuildDescriptor

 name="Stores7JavaBuildOptions"

 genProject="Stores7"

 genDirectory="C:\temp\Stores7\EGLSource\Stores7"

 system="WIN"

 J2EE="NO"

 sqlCommitControl="AUTOCOMMIT"

 itemsNullable="YES"

 genProperties="GLOBAL"

 genDataTables="YES"

 dbms="INFORMIX"

 sqlValidationConnectionURL="jdbc:informix-sqli://

mymachine.loc.comp.com:2005/stores7:

 INFORMIXSERVER=myserver;"

 sqlJDBCDriverClass="com.informix.jdbc.IfxDriver" sqlID="jdoe"

sqlPassword="password" sqlDB="jdbc:informix-sqli://

mymachine.loc.comp.com:2005/stores7:

 INFORMIXSERVER=myserver;" >

</BuildDescriptor>

</EGL>

Library or Application Project

The Conversion Utility does not have access to the user name or password values

for Library or Application projects. For these two project types, the Conversion

Utility generates a placeholder connection URL in the build descriptor file. This

connection URL must be edited before using the build file. In addition, you must

also edit the sqlID and sqlPassword values.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE EGL PUBLIC "-//IBM Corporation, Inc.//DTD EGL Build Parts

 6.0//EN" "">

<EGL>

<BuildDescriptor

 name="i4gldemoJavaBuildOptions"

 genProject="i4gldemo"

 genDirectory="C:\temp\i4gldemo\i4gldemo\EGLSource\i4gldemo"

 system="WIN"

 J2EE="NO"

 sqlCommitControl="AUTOCOMMIT"

 itemsNullable="YES"

© Copyright IBM Corp. 2005 H-1

genProperties="GLOBAL"

 genDataTables="YES"

 dbms="INFORMIX"

 sqlValidationConnectionURL="jdbc:informix-sqli://host:port/

database:INFORMIXSERVER=server;"

 sqlJDBCDriverClass="com.informix.jdbc.IfxDriver" sqlID="user"

sqlPassword="password" sqlDB="jdbc:informix-sqli://host:port/

database:INFORMIXSERVER=server;" >

</BuildDescriptor>

</EGL>

H-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix I. EGL Reserved Words

In This Appendix

This appendix lists the EGL reserved words forVersion 6.0.0.1. For the most recent

list of EGL reserved words see the EGL Reserved Words online help topics.

EGL Reserved Words

The following words are reserved in EGL:

v absolute, add, all, any, as

v bigInt, bin, bind, blob, boolean, by, byName, byPosition

v call, case, char, clob, close, const, continue, converse, current

v dataItem, dataTable, date, dbChar, decimal, decrement, delete, display, dliCall

v else, embed, end, escape, execute, exit, externallyDefined

v false, field, first, float, for, forEach, form, formGroup, forUpdate, forward,

freeSql, from, function

v get, goto

v handler, hex, hold

v if, import, in, inOut, insert, int, interval, into, is, isa

v label, languageBundle, last, library, like

v matches, mathlib, mbChar, money, move

v new, next, nil, no, noRefresh, not, nullable, num, number, numc

v onEvent, onException, open, openUI, otherwise, out

v pacf, package, pageHandler, passing, prepare, previous, print, private, program,

psb

v record, ref, relative, replace, report, return, returning, returns

v scroll, self, set, show, singleRow, smallFloat, smallInt, sql, sqlCondition, stack,

string, strlib, syslib, sysvar

v this, time, timeStamp, to, transaction, transfer, true, try, type

v unicode, update, url, use, using, usingKeys

v when, while, with, withinParent

v yes

© Copyright IBM Corp. 2005 I-1

I-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Glossary

C

Command line conversion. A command line

equivalent to the Conversion Utility Wizard. Running

this program requires you to manually create the

configuration file and then run the e4GL script. The

command line conversion is recommended primarily

for reconversion efforts.

Configuration file. Located in the

EGLDestinationDirectory/ConversionArtifacts/

config directory, this file provides details about your

configuration.

Console User Interface (CUI). The EGL equivalent to

4GL Forms.

Conversion artifacts. The configuration, manifest, and

conversion log files generated during the conversion.

Conversion log. Located in the

EGLDestinationDirectory/ConversionArtifacts

/log directory and named ProjectName.log, the

conversion log identifies the conversion errors,

warnings and file disposition. This file is used to

identify how to correct conversion errors.

Conversion Utility Wizard. This wizard collects your

database schema, shared library and I4GL application

information and launches the conversion process.

ConversionArtifacts directory. Located in

EGLDestinationDirectory, this directory contains the

sub-directories for the configuration, manifest, and log

files.

E

E4GL. This is the script program for the command

line conversion of I4GL files to EGL. E4GL activates the

I4GL2EGL Conversion Utility.

EGL. A high-level language that allows developers to

focus on business logic as they create complex business

applications for deployment in any of several

environments, including the Web. The language

simplifies database and message-queue access, as well

as the use of J2EE.

EGL package. An EGL package is a named collection

of related source parts, and is comparable to a I4GL

Project. During I4GL to EGL conversion, I4GL Project

components are converted into EGL Package parts.

EGL project. An EGL project includes zero to many

source folders, each of which includes zero to many

packages, each of which includes zero to many files.

Each file contains zero to many parts.

I

I4GL2EGL. The program that converts I4GL source

files into EGL source files.

Information Center. The online help that provides

detailed information about your Rational product, and

EGL. Access the information center by selecting Help >

Rational Help.

J

JasperReports. An open source reporting library

written in Java and used by EGL to produce reports.

Your I4GL reports convert to both .egl and

JasperReport .jrxml files.

M

Manifest file. Located in the

EGLDestinationDirectory/ConversionArtifacts

/manifest directory, a manifest file is generated for each

conversion stage. The database schema manifest file

contains information about all of the tables, columns

and data types of the selected database. The shared

library manifest file lists the I4GL and assumed C

function calls used in the I4GL converting project. The

application manifest file provides a list of the technical

details of the project.

R

readme.html. Located in the top directory of your

Rational product, the readme.html file contains

information on product limitations.

readme004FGL.html. Located in the Conversion

Utility plugin directory, the readme004FGL.html file

contains information on Conversion Utility limitations

and procedures, and changes to documentation since

the completion of this User’s Guide.

Reconversion. Occasionally shared libraries do not

convert successfully and must be reconverted, either

through the Conversion Utility Wizard or by command

line.

W

Wizard. The Conversion Utility Wizard guides you

through the steps necessary to convert your I4GL

© Copyright IBM Corp. 2005 J-1

application. Access the Wizard by selecting File > New

> Other > Informix 4GL to EGL Conversion.

Workspace. In Rational products, the workspace is the

central hub for data files. A workspace’s resources are

organized in a tree structure, with projects at the top,

and folders and files underneath.

J-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Error Messages

This error messages section provides explanatory notes and user responses for

Conversion Utility and FGL Parser error messages.

Occasionally, the Conversion Utility terminates because of problems with your JRE

or Rational product. In such a case, the conversion terminates without producing

any error message or log file. Once you have resolved the problem with your JRE

or Rational product, you must start the conversion process from the beginning.

Conversion Utility Error Messages

The name of the configuration file is not provided.

Explanation: The name of the configuration file was

not entered or was incorrectly entered in the wizard or

the command line.

User Response: Enter the correct name of the

configuration file.

The configuration file cannot be read or has an

invalid format.

Explanation: The configuration file cannot be read or

has an invalid format.

User Response: Correct the format of the

configuration file.

The manifest file cannot be read or has an invalid

format.

Explanation: The manifest file cannot be read or has

an invalid format.

User Response: Correct the format of the manifest file.

The conversion artifacts directory cannot be created.

Explanation: The conversion artifacts directory cannot

be created.

User Response: Check the write permission in the file

system to create the artifacts directory.

The I4GL root directory does not exist or cannot be

read.

Explanation: The I4GL root directory does not exist or

cannot be read.

User Response: Provide the correct I4GL root

directory.

The I4GL source file does not exist or cannot be read.

Explanation: The I4GL source file does not exist or

cannot be read.

User Response: Check the path and the read

permission of the I4GL source file.

The I4GL form file does not exist or cannot be read.

Explanation: The I4GL form file does not exist or

cannot be read.

User Response: Check the path and the read

permission of the I4GL form file.

The I4GL message file does not exist or cannot be

read.

Explanation: The I4GL message file does not exist or

cannot be read.

User Response: Check the path and the read

permission of the I4GL message file.

The EGL destination directory cannot be created.

Explanation: The EGL destination directory cannot be

created.

User Response: Verify that you have enough disc

space and have write permission.

No database connection information is found in the

configuration file.

Explanation: The configuration file does not contain

information on how to connect to your Informix

database.

User Response: Verify that the configuration file

contains database connection information. The Database

section of the configuration file must have valid XML

elements that conform to the DTD.

The EGL source file cannot be created.

Explanation: The EGL source file cannot be created.

© Copyright IBM Corp. 2005 K-1

User Response: Check the write permission and disk

space of the EGL destination directory.

The manifest file cannot be created.

Explanation: The manifest file cannot be created.

User Response: Check the path and write permission

of the ConversionArtifacts/manifest directory.

A syntax error was found in the I4GL form file.

Explanation: A syntax error was found in the I4GL

form file.

User Response: Verify that the error file created for

the line and column number information where the

syntax error was found. This file must be a valid I4GL

form file. Compile the form file with the I4GL form4gl

form compiler to identify error message details.

The conversion log file cannot be created.

Explanation: The conversion log file cannot be

created.

User Response: Check the path and write permission

of the ConversionArtifacts/log subdirectory.

The directory does not exist or has no write

permissions.

Explanation: The directory does not exist or has no

write permissions.

User Response: Check the path and the write

permissions of the directory.

FGL Parser Messages

Found IDENTIFIER in array dimension. May need to

be defined.

Explanation: I4GL does not allow variables in array

dimension declarations. Therefore, the I4GL file must

use a preprocessor directive to resolve this problem,

which occurs when the I4GL compiler converts it to C.

User Response: The IDENTIFER must be created as a

final INT variable in EGL and a value must be assigned

to it.

Return type unknown.

Explanation: The function returns a value, but the

value could not be determined.

User Response: Correct the declared return type for

the function in EGL.

Cursor declaration not located.

Explanation: The cursor name was opened, but the

declaration could not be found to associate the cursor

with the prepared statement and the HOLD/SCROLL

attributes.

User Response: Determine the HOLD/SCROLL

characteristics of the cursor from the I4GL program,

and if either is specified, add the attributes on the EGL

open statement.

Dynamic specification of Form is not supported.

Explanation: A Form cannot be loaded dynamically.

The Local/Global instance of the Form must be

declared. The statements referencing the Form through

the variable work if there is an existing instance of a

Form with a name equal to the value of the variable.

User Response: Declare the Local/Global instance.

Error Unsupported statement.

Explanation: The statement at the specified line is not

supported during I4GL to EGL conversion, or by the

EGL language.

User Response: Conversion is not possible. Rewrite

the functionality in EGL if still required.

C-compiler directive encountered.

Explanation: I4GL allows you to embed C compiler

directives in the I4GL file, which is included in the

intermediate ESQL/C files evaluated by the C compiler.

These C compiler directives are not supported during

I4GL to EGL conversion and are not typically

supported by EGL.

User Response: The conversion ignored the

C-compiler directive. Verify and correct the generated

code relating to the directive.

Assumed C-compiler directive encountered but not at

start of line.

Explanation: I4GL allows you to embed C compiler

directives in the I4GL file, which is included in the

intermediate files sent to the C compiler. These C

compiler directives are not supported during I4GL to

EGL conversion, and are not typically supported by

EGL. The directives must usually start in column 1 but

in this instance they do not.

User Response: The conversion ignored the

C-compiler directive. Verify and correct the generated

code relating to the directive.

Undefined variable ″{0}″.

Explanation: A definition for the named variable

could not be found, thus preventing the proper

K-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

generation of the code that references the variable

when the type information is required.

User Response: Check the variable name generated to

determine if it was mapped from a reserved word or

an I4GL variable, or if it was a global variable. Correct

the Conversion Project definition to include the

required global libraries or missing files.

″WITH REOPTIMIZATION″ is not supported.

Explanation: The 4GL/ESQL/C allowed specifying

’WITH REOPTIMIZATION’ when opening a cursor.

JDBC does not support this, so the option is ignored.

SQL statements with host variable parameters are

typically reoptimized by the server with each open.

User Response: Consider the possible performance

impact with your target server. If the impact is

significant, rewriting the code to re-prepare the

statement will reoptimize the execution.

″With Concurrent Transactions″ is the only supported

mode.

Explanation: JDBC does not limit the ability to have

concurrent transactions. No errors are generated at run

time if the application with a pending transaction starts

a new transaction on a different connection.

User Response: If this situation must be prevented,

write additional checks into the program to prevent

switching connections with transactions pending. The

disconnect() function will return an exception if a

transaction is pending.

NOT IMPLEMENTED.

Explanation: The options at the specified location in

the statement are not supported during I4GL to EGL

conversion or by the EGL language.

User Response: Rewrite the code using EGL

capabilities.

Duplicate Function: ″{0}″ defined locally and in

external project ″{1}″.

Explanation: The function name specified was already

defined in an imported project. A possible cause for

this error is that I4GL files were incorrectly combined

into the same conversion project or that a shared

library manifest file was included unnecessarily.

User Response: Verify that I4GL files were not

incorrectly combined into the same conversion project

and that a shared library manifest file was not included

unnecessarily. You should also rename the function or

remove the use statement specifying the library

containing the duplicate function.

Function ″{0}″ referenced in another project before

defined. Reconversion required for project ″{1}″.

Explanation: A previously undefined function

referenced in an imported project was defined here.

User Response: Reconvert he imported project to

ensure correct code generation.

Undefined type ″{0}″ for variable ″{1}″

Explanation: The specified record type was not found

in any SCHEMA manifests and is needed by the

specified variable. This can happen when the

application is using an ANSI database, and the source

is written assuming that the current user is the owner

of the ANSI tables.

User Response: Either add the owner names to the

table references or remove the owner names from the

SCHEMA manifest and reattempt the conversion.

ERROR: Invalid manifest type.

Explanation: The manifest type does not match or

identify a known DTD definition for the manifest.

User Response: Regenerate the associate library to

recreate the manifest file, or attempt to correct the DTD

reference.

ERROR: Manifest file reconversion failed.

Explanation: An internal exception occurred updating

the dependent project files.

User Response: Correct the external cause and rerun

the conversion. If the external cause cannot be

corrected, contact IBM support.

ERROR: Project {0} needs to be reconverted, Manifest

{1} has been updated.

Explanation: The specified project references functions

defined in the current project.

User Response: Reconvert the specified project to

ensure proper code generation.

ERROR: Manifest file generation failed.

Explanation: An exception occurred while trying to

save the project manifest.

User Response: Correct the external cause and rerun

the conversion. If the external cause cannot be

corrected, contact IBM support.

Error Messages K-3

ERROR: Cannot Generate Native Library

Explanation: An exception occurred while trying to

write the C native library code.

User Response: Correct the external cause and rerun

the conversion. If the external cause cannot be

corrected, contact IBM support.

K-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2005 L-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

L-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database Architecture;

NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix®; C-ISAM®;

Foundation.2000™; IBM Informix

® 4GL; IBM Informix®DataBlade®Module; Client

SDK™; Cloudscape™; Cloudsync™; IBM Informix®Connect; IBM Informix®Driver

for JDBC; Dynamic Connect™; IBM Informix®Dynamic Scalable

Architecture™(DSA); IBM Informix®Dynamic Server™; IBM Informix®Enterprise

Gateway Manager (Enterprise Gateway Manager); IBM Informix®Extended Parallel

Server™; i.Financial Services™; J/Foundation™; MaxConnect™; Object Translator™;

Red Brick™; IBM Informix® SE; IBM Informix® SQL; InformiXML™; RedBack®;

SystemBuilder™; U2™; UniData®; UniVerse®; wintegrate®are trademarks or

registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks

of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be

trademarks or service marks of others.

Notices L-3

L-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Index

Special characters
_FINISH()

EGL behavior 4-16

_OUTPUT()
EGL behavior 4-15

_OUTPUT(a, b, c)
EGL behavior 4-15

_START()
EGL behavior 4-15

.eglbld 4-5

.properties 4-11

Numerics
4GL

built-in functions
EGL equivalent A-11

built-in SQL functions and procedures
EGL equivalent A-13

compiler directives
EGL equivalent A-7

data types
EGL equivalent A-1

definition and declaration statements
EGL equivalent A-3

environment variables
EGL properties equivalent A-19

JDBC properties equivalent A-19

external SQL functions and procedures
EGL equivalent A-13

forms
EGL equivalent A-8

functions, built-in
EGL equivalent A-11

functions, built-in SQL
EGL equivalent A-13

functions, external SQL
EGL equivalent A-13

operators
EGL equivalent A-13

key-word based A-13

non-alphabetic symbols A-14

procedures, built-in SQL
EGL equivalent A-13

procedures, external SQL
EGL equivalent A-13

program flow control statements
EGL equivalent A-5

report driver statements
EGL equivalent A-11

report execution statements
EGL equivalent A-11

special data casting
EGL equivalent A-3

SQL client/server connection statements
EGL equivalent A-18

SQL cursor manipulation statements
EGL equivalent A-15

SQL data access statements
EGL equivalent A-17

4GL (continued)
SQL data definition statements

EGL equivalent A-16

SQL data integrity statements
EGL equivalent A-18

SQL data manipulation statements
EGL equivalent A-16

SQL dynamic management statements
EGL equivalent A-17

SQL optical subsystems statements
EGL equivalent A-19

SQL query optimization statements
EGL equivalent A-17

SQL stored procedure statements
EGL equivalent A-18

storage manipulation statements
EGL equivalent A-5

4GL equivalent 4-5

4GL file extensions
mapped to EGL 4-5

A
After Group Of

conversion of 4-20

afterGroup
Report handler method 4-20

Aggregate report functions
conversion

AVG 4-26

COUNT 4-25

MAX 4-25

MIN 4-25

PERCENT 4-26

SUM 4-24

Application conversion
command line mode 3-7

conversion utility processing 3-7

steps 3-4, 3-7

Application level shared library
creating 4-10, 4-11

Artifacts
conversion

default directory 4-3

generated during conversion 4-3

AVG aggregate report function
conversion 4-26

B
Before Group Of

conversion of 4-20

beforeDetailEval
Report handler method 4-20

beforeGroupOf
Report handler method 4-20

Boldface type ix

BOTTOM MARGIN
conversion of 4-18

© Copyright IBM Corp. 2005 X-1

Built-in functions
EGL equivalent A-11

Built-in SQL functions and procedures
EGL equivalent A-13

Business logic
report conversion 4-15

C
C functions

function call sequence 4-10

C libraries
connecting to EGL

EGL native library 4-9

Function table 4-9, 4-10

Function table example 4-9

linking to EGL 4-9, 4-11

CLIPPED
conversion of 4-23

Command line
application conversion 3-7

shared library reconversion 5-2

Compiler directives
EGL equivalent A-7

Complex reports
conversion 4-20, 4-21

Configuration file
corruption of

workaround 5-2

creating manually 4-4

description 4-4

DTD 4-4

location after conversion 4-3

manually creating a 3-8

naming conventions 4-4

sample 4-4

template examples D-1

Console user interface
code example C-1

statements A-8

Contact information xi

Conventions
typographical ix

Conversion
application

command line mode 3-7

steps 3-4, 3-7

artifacts 4-3

configuration file name 4-3

conversion log file name 4-3

default directory 4-3

EGL native library file name 4-3

ERR file 4-3, 4-8

function table location 4-3

manifest file 4-4

changes
overview 4-2

code example 4-17, B-1

code example, report B-1

errors, correcting 4-6, 4-9

limitations and workarounds 2-2

order 3-1

order of conversion 3-1

shared library
steps 3-3, 3-4

Conversion log 3-8

contents 4-7

Conversion log (continued)
correcting errors 4-6, 4-9

description 4-3

examples G-1

files classification
ERROR 4-7

FIXME 4-7

PASSED 4-7

TODO 4-7

how to use 4-6

JDBC driver errors 4-6, 4-8

location 4-6

location after conversion 4-3

Conversion project
FAILED 4-6

PASSED 4-6

reasons for failure 4-6

JDBC driver error 4-6

write permissions 4-6

report conversion 4-14

Conversion Utility
documentation ix

error messages K-1

features vii

installing viii

platforms supported ix

PRINT statement analysis 4-21

processing
application conversion 3-7

database schema extraction 3-3

shared library conversion 3-4

Wizard
overview 3-1

Conversion Utility Wizard
documentation x

conversionconfig.dtd 4-4

conversionsample.xml 4-4

Correcting conversion errors 4-6, 4-9

COUNT aggregate report function
conversion 4-25

Creating a configuration file 3-8

Creating the application level shared library 4-10, 4-11

D
Data Type Definition 3-8

Data types
EGL equivalent A-1

Database schema extraction
conversion utility processing 3-3

manifest file
contents 4-5

steps 3-1, 3-3

Database, active
assumptions with report driver functions 4-16

DEFINE Section
conversion 4-16, 4-17

local variables conversion 4-17

parameter conversion 4-16, 4-17

Definition and declaration statements
EGL equivalent A-3

Directory
default

conversion artifacts 4-3

Documentation
Conversion Utility Wizard x

EGL xi

X-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Documentation (continued)
online help xi

EGL tutorial
overview 4-31

information center
overview 4-31

DTD 3-8

examples F-1

E
EGL

documentation xi

EGL Reference Guide xi

online help xi

EGL Reference Guide xi

primitive types A-1

Tutorial xi

website xi

EGL build descriptor
examples H-1

file 4-5

EGL equivalent
4GL built-in functions A-11

4GL compiler directives A-7

4GL cursor manipulation statements A-15

4GL data types A-1

4GL definition and declaration statements A-3

4GL environment variables A-19

4GL external SQL functions A-13

4GL forms A-8

4GL key-word based operators A-13

4GL non-alphabetic based operators A-14

4GL operators A-13

4GL operators, key-word based A-13

4GL operators, non-alphabetic based A-14

4GL program flow control statements A-5

4GL report driver statements A-11

4GL report execution statements A-11

4GL SQL client/server connection statements A-18

4GL SQL data access statements A-17

4GL SQL data definition statements A-16

4GL SQL data integrity statements A-18

4GL SQL data manipulation statements A-16

4GL SQL dynamic management statements A-17

4GL SQL optical subsystems statements A-19

4GL SQL query optimization statements A-17

4GL SQL stored procedure statements A-18

4GL storage manipulation statements A-5

built-in SQL functions A-13

special data casting A-3

EGL file extensions
mapped to 4GL 4-5

EGL files
build file 4-29

overview 4-29

source file 4-29

EGL message file format 4-14

EGL native library 4-9

description 4-3

location after conversion 4-3

EGL packages
overview 4-28

EGL projects
overview 4-27

recommendations 4-30, 4-31

EGL properties 4-28

EGL Reference Guide xi

EGL report driver functions 4-15

_FINISH() 4-16

_OUTPUT() 4-15

_OUTPUT(a, b, c) 4-15

_START() 4-15

TERMINATE() 4-16

EGL report function calls 4-14

EGL reserved words I-1

EGL tutorial
overview 4-31

Environment variables ix, A-19

ERR file
description 4-3, 4-8

file name 4-3, 4-8

ERROR
converted file classification 4-7

Error messages
Conversion Utility K-1

file conversion 4-14

Errors
conversion

conversion log 4-6, 4-9

correcting 4-6, 4-9

Extraction, database schema
conversion utility processing 3-3

steps 3-1, 3-3

F
FAILED

conversion project 4-6

FILE
conversion of 4-24

First Page Header
conversion of 4-20

firstPageHeader
Report handler method 4-20

FIXME
converted file classification 4-7

FORMAT Section
complex reports

conversion 4-20, 4-21

conversion 4-19, 4-24

PRINT statement
conversion 4-21, 4-23

simple reports
conversion 4-19

FORMAT sub-sections
After Group Of 4-20

Before Group Of 4-20

converted to JasperReports bands 4-20

First Page Header 4-20

On Every Row 4-20

On Last Row 4-20

Page Header 4-20

Page Trailer 4-20

Forms
code example C-1

conversion to EGL C-1

EGL equivalent A-8

Function table 4-9

description 4-3

example 4-9

file name 4-3

modifications to 4-10

Index X-3

Functions
EGL report driver 4-15

report driver 4-15

_FINISH() 4-16

_OUTPUT() 4-15

_OUTPUT(a, b, c) 4-15

_START() 4-15

TERMINATE() 4-16

Functions, built-in
EGL Equivalent A-11

G
getPrintFlag

Report handler method 4-21

getPrintString
Report handler method 4-21

Global array variables
conversion of 4-17

conversion restrictions 4-16

I
Information center

overview 4-31

Informix database
schema extraction

conversion utility processing 3-3

steps 3-1, 3-3

init
Report handler method 4-21

Installation
Conversion utility 2-2

instructions viii

verification 2-2

J
JasperReports

bands 4-20

conversion code example 4-17

Java properties files
error message conversion 4-14

JDBC driver errors 4-6, 4-8

K
Key-word based operators

EGL equivalent A-13

L
LEFT MARGIN

conversion of 4-18

LINENO
conversion 4-21

conversion of 4-24

Linking C libraries to EGL 4-9, 4-11

Local variables conversion
DEFINE section 4-17

Log, conversion
See Conversion log.

M
Manifest file

corruption of
workaround 5-3

database schema extraction
contents 4-5

description 4-4

examples E-1

file name 4-4

shared library conversion
contents 4-5

MAX aggregate report function
conversion 4-25

MIN aggregate report function
conversion 4-25

N
New Project

definition
application conversion 3-5

database schema extraction 3-2

shared library conversion 3-3

Non-alphabetic based operators
EGL equivalent A-14

O
On Every Row

conversion of 4-20

On Last Row
conversion of 4-20

onLastRow
Report handler method 4-20

Open Project
definition

application conversion 3-5

shared library conversion 3-4

Operators
EGL equivalent A-13

key-word based
EGL equivalent A-13

non-alphabetic symbols
EGL equivalent A-14

ORDER BY Section
conversion 4-19

ORDER EXTERNAL BY
conversion 4-19

Order of 4GL conversion 3-1

OUTPUT section
conversion 4-18, 4-19

conversion of
BOTTOM MARGIN 4-18

LEFT MARGIN 4-18

PAGE LENGTH 4-18

REPORT TO 4-19

RIGHT MARGIN 4-18

TOP MARGIN 4-19

TOP OF PAGE 4-19

P
Page Header

conversion of 4-20

X-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

PAGE LENGTH
conversion of 4-18

Page Trailer
conversion of 4-20

pageHeader
Report handler method 4-20

PAGENO
conversion of 4-24

pageTrailer
Report handler method 4-20

Parameter conversion
DEFINE section 4-16, 4-17

PASSED
conversion project 4-6

converted file classification 4-7

PERCENT aggregate report function
conversion 4-26

Post-conversion
overview 4-1

task list 4-1

Pre-conversion
overview 2-1

task list 2-1

Presentation logic
report conversion 4-15

PRINT statement
conversion of 4-21, 4-23

expressions
conversion 4-22

in looping constructs 4-23

terminating with a semi-colon
conversion of 4-23

Procedures, built-in SQL
EGL equivalent A-13

Procedures, external SQL
EGL equivalent A-13

Product features vii

Program flow control statements
EGL equivalent A-5

Project conversion
4GL to EGL file mapping

error message files 4-5

form specification files 4-5

overview 4-5

report files 4-5

shared library files 4-5

source files 4-5

error message files 4-14

Properties files
Files

properties 4-11

R
Rational Product Updater

used to install Conversion Utility viii

Reconversion of shared library
command line mode 5-2

Conversion Wizard reconversion 5-2

how to reconvert 5-1

options 5-1

overview 5-1

process 5-1

reasons for failure 5-2

when to reconvert 5-1

workarounds 5-2

Reconversion Project
definition

shared library conversion 3-4

Report
conversion

DEFINE Section 4-16, 4-17

DEFINE Section local variables conversion 4-17

DEFINE Section parameter conversion 4-16, 4-17

FORMAT Section 4-19, 4-20, 4-21, 4-23, 4-24

I4GL aggregate report functions 4-24, 4-27

I4GL Report Sections 4-16

LINENO 4-21

ORDER BY Section 4-19

ORDER EXTERNAL BY 4-19

OUTPUT section 4-18, 4-19

report operators 4-23

SKIP TO TOP OF PAGE 4-21

conversion to EGL 4-14

changes to I4GL code 4-14

example B-1

conversion to JasperReports 4-17

EGL function calls 4-14

EGL processing 4-16

global array variable restrictions 4-16

Report conversion
business logic conversion 4-15

EGL report driver functions 4-15

filename conversion
business logic 4-15

presentation logic 4-15

sub-reports 4-15

multiple looping constructs 4-15

presentation logic conversion 4-15

sub-reports 4-15

Report driver statements
EGL equivalent A-11

Report execution statements
EGL equivalent A-11

Report handler methods
afterGroup 4-20

beforeDetailEval 4-20

beforeGroupOf 4-20

firstPageHeader 4-20

getPrintFlag 4-21

getPrintString 4-21

init 4-21

onLastRow 4-20

pageHeader 4-20

pageTrailer 4-20

Report operators
conversion of

CLIPPED 4-23

FILE 4-24

LINENO 4-24

PAGENO 4-24

SPACE 4-24

SPACES 4-24

USING 4-24

WORDWRAP 4-23

REPORT TO
conversion of 4-19

RIGHT MARGIN
conversion of 4-18

Index X-5

S
Shared library

conversion
conversion utility processing 3-4

steps 3-3, 3-4

reconversion
command line mode 5-2

Conversion Wizard reconversion 5-2

how to reconvert 5-1

options 5-1

overview 5-1

process 5-1

reasons for failure 5-2

when to reconvert 5-1

workarounds 5-2

Shared library conversion
manifest file

contents 4-5

Simple reports
conversion 4-19

SKIP TO TOP OF PAGE
conversion 4-21

SPACE
conversion of 4-24

SPACES
conversion of 4-24

Special data casting
EGL equivalent A-3

Storage manipulation statements
EGL equivalent A-5

SUM aggregate report function
conversion 4-24

T
Tasks, overview of pre-conversion 2-1

TERMINATE()
EGL behavior 4-16

TODO
converted file classification 4-7

TOP MARGIN
conversion of 4-19

TOP OF PAGE
conversion of 4-19

Tutorial
EGL xi, 4-31

Typographical conventions ix

U
Users, types of vii

USING
conversion of 4-24

W
Wizard, conversion utility

overview 3-1

WORDWRAP
conversion of 4-23

Workarounds
shared library reconversion 5-2

Write permissions
lack of 4-6

X-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

����

Printed in USA

G251-2485-00

	Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Features of This Product
	Product Installation
	Platforms Supported
	Typographical Conventions
	Documentation
	IBM Welcomes Your Comments

	Chapter 1. Overview of the Conversion Process
	In This Chapter
	Introduction to the I4GL to EGL Conversion
	Conversion Benefits
	I4GL to EGL Conversion Overview
	Pre-Conversion Stage
	Conversion Stage
	Post-Conversion Stage
	Reconversion Stage

	Conversion Limitations
	C Interface Support and Limitations
	Report Support and Limitations
	Screen Forms Support

	Chapter 2. Preparing for Conversion
	In This Chapter
	Overview of Pre-Conversion Tasks
	Verify the I4GL Conversion Utility Installation
	Conversion Limitations and Workarounds
	C Code Functionality
	Reports

	Identify Existing I4GL Components Project
	Generate I4GL Source Files
	Compile your I4GL Application
	Identify the Client Locale
	Identify and Separate the Shared Libraries
	Modifying C Code Used with Rapid Development System (RDS)

	Identify User-Defined Message Files
	Identify Informix Database Schema Information
	Identify an EGL Destination Directory
	Prepare the I4GL Source File Directory

	Chapter 3. Conversion Tasks
	In This Chapter
	Conversion Utility Stages
	Informix Database Schema Extraction
	Conversion Utility Processing for Informix Database Schema Extraction

	I4GL Shared Libraries Conversion
	Conversion Utility Processing for I4GL Shared Libraries

	I4GL Application Conversion
	Conversion Utility Processing for I4GL Application Conversion

	Conversion Utility Command Line Mode
	The Conversion Log

	Chapter 4. Post-Conversion Tasks
	In This Chapter
	Post-Conversion Tasks
	Changes Made During the Conversion
	Artifacts Generated During the Conversion
	Configuration File
	Manifest File

	Source File Conversion Mapping
	Command Line Conversion: Importing Projects into the Workspace
	Correcting Conversion Errors
	Conversion Log Contents

	Using C Shared Libraries with the EGL Program
	EGL Native Library
	Function Table
	Creating the Application Level Shared Library

	Properties Files
	Validating and Compiling Converted EGL Files
	Generating EGL to Java
	Understanding Error Message Conversion
	Understanding Report Conversion
	EGL Report Driver Functions
	I4GL Report Sections
	I4GL DEFINE Section
	I4GL OUTPUT Section
	I4GL ORDER BY Section
	I4GL FORMAT Section

	Understanding your EGL Projects, Packages and Files
	EGL Project
	EGL source folder
	EGL build path
	Default build descriptors

	Package
	EGL Files
	Source file
	Build File

	Recommendations
	For build descriptors
	For packages
	Part assignment

	The Information Center Help System and EGL Tutorial

	Chapter 5. Reconversion Process and Tasks
	In This Chapter
	When to Reconvert Your I4GL Shared Libraries
	How to Reconvert Your I4GL Shared Libraries
	Conversion Wizard Reconversion
	Command Line Reconversion
	Reasons and Workarounds for Unsuccessful Reconversions

	Appendix A. I4GL to EGL Syntax Mapping
	Appendix B. I4GL Report Conversion Code Example
	Appendix C. I4GL Form Code to EGL Form Code Example
	Appendix D. Configuration File Templates
	Appendix E. Manifest File Examples
	Appendix F. DTD Examples
	Appendix G. Conversion Log Examples
	Appendix H. EGL Build Descriptor Example
	Appendix I. EGL Reserved Words
	Glossary
	Error Messages
	Notices
	Index

